Distinct functional levels of human voice processing in the auditory cortex.

Matthias Staib, Sascha Frühholz
Author Information
  1. Matthias Staib: Cognitive and Affective Neuroscience Unit, University of Zurich, 8050 Zurich, Switzerland. ORCID
  2. Sascha Frühholz: Cognitive and Affective Neuroscience Unit, University of Zurich, 8050 Zurich, Switzerland.

Abstract

Voice signaling is integral to human communication, and a cortical voice area seemed to support the discrimination of voices from other auditory objects. This large cortical voice area in the auditory cortex (AC) was suggested to process voices selectively, but its functional differentiation remained elusive. We used neuroimaging while humans processed voices and nonvoice sounds, and artificial sounds that mimicked certain voice sound features. First and surprisingly, specific auditory cortical voice processing beyond basic acoustic sound analyses is only supported by a very small portion of the originally described voice area in higher-order AC located centrally in superior Te3. Second, besides this core voice processing area, large parts of the remaining voice area in low- and higher-order AC only accessorily process voices and might primarily pick up nonspecific psychoacoustic differences between voices and nonvoices. Third, a specific subfield of low-order AC seems to specifically decode acoustic sound features that are relevant but not exclusive for voice detection. Taken together, the previously defined voice area might have been overestimated since cortical support for human voice processing seems rather restricted. Cortical voice processing also seems to be functionally more diverse and embedded in broader functional principles of the human auditory system.

Keywords

References

  1. Hear Res. 2018 Sep;366:65-74 [PMID: 29776691]
  2. Front Hum Neurosci. 2014 May 05;8:275 [PMID: 24839437]
  3. J Neurosci. 2003 Jul 2;23(13):5799-804 [PMID: 12843284]
  4. Trends Neurosci. 2002 Jul;25(7):348-53 [PMID: 12079762]
  5. Neuroimage. 2020 Feb 15;207:116401 [PMID: 31783116]
  6. J Neurosci. 2015 Feb 4;35(5):2058-73 [PMID: 25653363]
  7. Curr Biol. 2013 Jun 17;23(12):1075-80 [PMID: 23707425]
  8. PLoS Comput Biol. 2007 Jun;3(6):e100 [PMID: 17542641]
  9. Neuroimage. 2003 Jan;18(1):127-42 [PMID: 12507450]
  10. Prog Neurobiol. 2021 May;200:101982 [PMID: 33338555]
  11. Neuroimage. 2002 May;16(1):217-40 [PMID: 11969330]
  12. Neuroimage. 2005 Apr 15;25(3):653-60 [PMID: 15808966]
  13. Sci Rep. 2017 Sep 14;7(1):11526 [PMID: 28912437]
  14. PLoS Comput Biol. 2009 Mar;5(3):e1000302 [PMID: 19266016]
  15. Neuroimage. 2007 Oct 1;37(4):1445-56 [PMID: 17659885]
  16. Neuroimage. 2020 Nov 1;221:117191 [PMID: 32711066]
  17. PLoS Biol. 2018 Dec 3;16(12):e2005127 [PMID: 30507943]
  18. J Neurosci. 2014 May 14;34(20):6813-21 [PMID: 24828635]
  19. Curr Biol. 2011 Feb 22;21(4):R143-5 [PMID: 21334289]
  20. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19514-9 [PMID: 19033466]
  21. Neuroimage. 2015 Oct 1;119:164-74 [PMID: 26116964]
  22. Cereb Cortex. 2013 Apr;23(4):958-66 [PMID: 22490550]
  23. Sci Rep. 2015 Jun 19;5:10950 [PMID: 26091254]
  24. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1188-93 [PMID: 21199948]
  25. Nat Neurosci. 2009 Jun;12(6):718-24 [PMID: 19471271]
  26. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10038-42 [PMID: 12909719]
  27. Nat Neurosci. 2006 Sep;9(9):1177-85 [PMID: 16892057]
  28. Philos Trans R Soc Lond B Biol Sci. 2006 Dec 29;361(1476):2109-28 [PMID: 17118927]
  29. Proc Biol Sci. 2014 Sep 22;281(1791):20141000 [PMID: 25100695]
  30. J Neurophysiol. 2015 Sep;114(3):1819-26 [PMID: 26245316]
  31. J Neurosci. 2010 Jun 2;30(22):7604-12 [PMID: 20519535]
  32. Trends Cogn Sci. 2013 Jun;17(6):263-71 [PMID: 23664703]
  33. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8 [PMID: 16537458]
  34. Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14611-6 [PMID: 19667199]
  35. Nat Neurosci. 2015 Jun;18(6):903-11 [PMID: 25984889]
  36. J Neurophysiol. 2009 Feb;101(2):773-88 [PMID: 19036867]
  37. J Neurosci. 2013 Jul 17;33(29):11888-98 [PMID: 23864678]
  38. Neuroscience. 2018 Oct 1;389:54-73 [PMID: 28782642]
  39. Neuroimage. 2001 May;13(5):903-19 [PMID: 11304086]
  40. Hum Brain Mapp. 2016 Oct;37(10):3486-501 [PMID: 27160707]
  41. Curr Biol. 2011 Aug 23;21(16):1408-15 [PMID: 21835625]
  42. Nat Rev Neurosci. 2013 Oct;14(10):693-707 [PMID: 24052177]
  43. Neuroimage. 2019 Nov 1;201:116004 [PMID: 31299368]
  44. Cereb Cortex. 2013 Jun;23(6):1388-95 [PMID: 22610392]
  45. Brain. 1996 Aug;119 ( Pt 4):1239-47 [PMID: 8813286]
  46. PLoS One. 2019 Oct 10;14(10):e0222796 [PMID: 31600231]
  47. Front Neuroinform. 2015 Jan 06;8:88 [PMID: 25610393]
  48. Cereb Cortex. 2010 Dec;20(12):2958-70 [PMID: 20382643]
  49. Neuron. 2015 Dec 16;88(6):1281-1296 [PMID: 26687225]
  50. J Neurosci Methods. 2017 Jan 30;276:56-72 [PMID: 27832957]
  51. Nature. 2000 Jan 20;403(6767):309-12 [PMID: 10659849]
  52. Curr Biol. 2014 Mar 3;24(5):574-8 [PMID: 24560578]
  53. Neuroreport. 2003 Nov 14;14(16):2105-9 [PMID: 14600506]
  54. J Cogn Neurosci. 2012 May;24(5):1224-32 [PMID: 22360624]
  55. J Neurosci. 2014 Mar 26;34(13):4665-76 [PMID: 24672012]
  56. Front Neurosci. 2014 Jul 30;8:228 [PMID: 25126055]
  57. Neuroimage. 2005 May 1;25(4):1325-35 [PMID: 15850749]
  58. Nat Neurosci. 2008 Mar;11(3):367-74 [PMID: 18264095]
  59. Neuroimage. 2004 Jun;22(2):948-55 [PMID: 15193626]
  60. J Neurosci. 2009 Feb 18;29(7):2283-96 [PMID: 19228981]
  61. Neuroimage. 2018 Dec;183:356-365 [PMID: 30099078]
  62. Neuroimage. 2005 Apr 15;25(3):661-7 [PMID: 15808967]
  63. Nat Neurosci. 2005 Feb;8(2):145-6 [PMID: 15665880]
  64. Trends Cogn Sci. 2015 Dec;19(12):783-796 [PMID: 26454482]
  65. Cereb Cortex. 2015 Nov;25(11):4596-609 [PMID: 26048954]

MeSH Term

Humans
Auditory Cortex
Acoustic Stimulation
Auditory Perception
Voice
Sound
Magnetic Resonance Imaging

Word Cloud

Created with Highcharts 10.0.0voiceareaauditoryvoicesprocessinghumancorticalACcortexfunctionalsoundseemssupportlargeprocesssoundsfeaturesspecificacoustichigher-ordermightVoicesignalingintegralcommunicationseemeddiscriminationobjectssuggestedselectivelydifferentiationremainedelusiveusedneuroimaginghumansprocessednonvoiceartificialmimickedcertainFirstsurprisinglybeyondbasicanalysessupportedsmallportionoriginallydescribedlocatedcentrallysuperiorTe3Secondbesidescorepartsremaininglow-accessorilyprimarilypicknonspecificpsychoacousticdifferencesnonvoicesThirdsubfieldlow-orderspecificallydecoderelevantexclusivedetectionTakentogetherpreviouslydefinedoverestimatedsinceratherrestrictedCorticalalsofunctionallydiverseembeddedbroaderprinciplessystemDistinctlevelsMVPAfMRI

Similar Articles

Cited By