Cross-Sectional Investigation of Brain Volume in Dyslexia.

Carolin Ligges, Marc Ligges, Christian Gaser
Author Information
  1. Carolin Ligges: Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany.
  2. Marc Ligges: Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany.
  3. Christian Gaser: Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.

Abstract

The goal of the study was to determine whether Dyslexia is associated with differences in local brain volume, and whether these local brain volume differences show cross-sectional age-effects. We investigated the local volume of gray and white brain matter with voxel-based morphometry (VBM) as well as reading performance in three age groups of dyslexic and neurotypical normal reading subjects (children, teenagers and adults). Performance data demonstrate a steady improvement of reading skills in both neurotypical as well as dyslexic readers. However, the pattern of gray matter volumes tell a different story: the children are the only group with significant differences between neurotypical and dyslexic readers in local gray matter brain volume. These differences are localized in brain areas associated with the reading network (angular, middle temporal and inferior temporal gyrus as well as the cerebellum). Yet the comparison of neurotypical and normal readers over the age groups shows that the steady increase in performance in neurotypical readers is accompanied by a steady decrease of gray matter volume, whereas the brain volumes of dyslexic readers do not show this linear correlation between brain volume and performance. This is further evidence that Dyslexia is a disorder with a neuroanatomical basis in the form of a lower volume of gray matter in parts of the reading network in early dyslexic readers. The present data point out that network shaping processes in gray matter volume in the reading network does take place over age in Dyslexia. Yet this neural foundation does not seem to be sufficient to allow normal reading performances even in adults with Dyslexia. Thus Dyslexia is a disorder with lifelong consequences, which is why consistent support for affected individuals in their educational and professional careers is of great importance. Longitudinal studies are needed to verify whether this holds as a valid pattern or whether there is evidence of greater interindividual variance in the neuroanatomy of Dyslexia.

Keywords

References

  1. Brain. 2005 Oct;128(Pt 10):2453-61 [PMID: 15975942]
  2. J Cogn Neurosci. 2015 Feb;27(2):308-18 [PMID: 25203270]
  3. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4234-9 [PMID: 17360506]
  4. Neurosci Biobehav Rev. 2018 Jan;84:434-452 [PMID: 28797557]
  5. Trends Cogn Sci. 2005 Mar;9(3):104-10 [PMID: 15737818]
  6. IEEE Trans Med Imaging. 1997 Apr;16(2):176-86 [PMID: 9101327]
  7. Nat Neurosci. 2003 Jul;6(7):767-73 [PMID: 12754516]
  8. Neuroreport. 2014 Mar 26;25(5):347-52 [PMID: 24407200]
  9. Cereb Cortex. 2007 May;17(5):1092-9 [PMID: 16782757]
  10. J Neurosci. 2013 Aug 14;33(33):13251-8 [PMID: 23946384]
  11. J Neurosci. 2004 Sep 22;24(38):8223-31 [PMID: 15385605]
  12. Neuroimage. 2011 Aug 1;57(3):742-9 [PMID: 20884362]
  13. Cogn Neuropsychol. 2012;29(1-2):104-22 [PMID: 22559749]
  14. Neuroimage. 2004 Sep;23(1):84-97 [PMID: 15325355]
  15. Neuroimage. 2009 Jan 1;44(1):83-98 [PMID: 18501637]
  16. Curr Opin Neurobiol. 2013 Apr;23(2):261-8 [PMID: 23312307]
  17. Neuroimage. 2000 Jun;11(6 Pt 1):805-21 [PMID: 10860804]
  18. J Neurosci. 2014 Jan 15;34(3):901-8 [PMID: 24431448]
  19. Brain Res. 2008 Jan 16;1189:78-89 [PMID: 18068690]
  20. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8174-9 [PMID: 15148381]
  21. Indian J Psychiatry. 2008 Jul;50(3):202-8 [PMID: 19742233]
  22. Cortex. 2005 Jun;41(3):304-15 [PMID: 15871596]
  23. Brain Struct Funct. 2009 Oct;213(6):511-23 [PMID: 19618210]
  24. Neural Comput. 1999 Nov 15;11(8):2061-80 [PMID: 10578044]
  25. Neuroimage. 2001 Jul;14(1 Pt 1):21-36 [PMID: 11525331]
  26. Cereb Cortex. 1996 Jul-Aug;6(4):551-60 [PMID: 8670681]
  27. Neuroscientist. 2004 Aug;10(4):362-71 [PMID: 15271263]
  28. eNeuro. 2016 Jan 23;3(1): [PMID: 26835509]
  29. Arch Neurol. 1991 May;48(5):539-45 [PMID: 2021369]
  30. Z Kinder Jugendpsychiatr Psychother. 2007 Mar;35(2):107-15; quiz 116-7 [PMID: 17608280]
  31. Curr Opin Neurobiol. 2003 Apr;13(2):212-8 [PMID: 12744976]
  32. Sci Rep. 2017 Jul 20;7(1):6009 [PMID: 28729533]
  33. Neuroimage. 2011 Aug 1;57(3):733-41 [PMID: 21029785]
  34. Annu Rev Neurosci. 2007;30:475-503 [PMID: 17600524]
  35. IEEE Trans Med Imaging. 2005 Dec;24(12):1548-65 [PMID: 16350916]
  36. Dev Cogn Neurosci. 2013 Oct;6:61-71 [PMID: 23896579]
  37. Neuroimage. 2012 Aug 15;62(2):816-47 [PMID: 22584224]
  38. Front Hum Neurosci. 2012 May 01;6:120 [PMID: 22557962]
  39. Hum Brain Mapp. 2015 May;36(5):1741-54 [PMID: 25598483]
  40. Hum Brain Mapp. 2013 Nov;34(11):3055-65 [PMID: 22711189]
  41. Ann N Y Acad Sci. 2008 Dec;1145:237-59 [PMID: 19076401]
  42. Neuroimage. 2007 Nov 15;38(3):564-75 [PMID: 17884585]
  43. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):914-21 [PMID: 9448259]
  44. Annu Rev Psychol. 2008;59:451-75 [PMID: 18154503]
  45. Neuroimage. 2007 Oct 15;38(1):95-113 [PMID: 17761438]
  46. J Commun Disord. 2001 Nov-Dec;34(6):479-92 [PMID: 11725860]
  47. Hum Brain Mapp. 2008 May;29(5):613-25 [PMID: 17636558]
  48. Arch Neurol. 1994 Sep;51(9):874-87 [PMID: 8080387]
  49. Z Kinder Jugendpsychiatr Psychother. 2002 May;30(2):113-26 [PMID: 12053875]
  50. Neuroimage. 2012 Feb 1;59(3):3021-32 [PMID: 22023744]
  51. Ment Retard Dev Disabil Res Rev. 2003;9(3):196-204 [PMID: 12953299]
  52. PLoS One. 2012;7(8):e43122 [PMID: 22916214]
  53. J Biomed Nanotechnol. 2014 Oct;10(10):2778-805 [PMID: 25992418]
  54. Neuropsychologia. 2008 Nov;46(13):3170-8 [PMID: 18692514]
  55. Biol Psychiatry. 2005 Jun 1;57(11):1301-9 [PMID: 15950002]

Word Cloud

Created with Highcharts 10.0.0volumebrainreadingdyslexiagraymatterreaderslocaldyslexicneurotypicalwhetherdifferencesnetworkwellperformanceagenormalsteadyassociatedshowVBMgroupschildrenadultsdatapatternvolumestemporalYetevidencedisordergoalstudydeterminecross-sectionalage-effectsinvestigatedwhitevoxel-basedmorphometrythreesubjectsteenagersPerformancedemonstrateimprovementskillsHowevertelldifferentstory:groupsignificantlocalizedareasangularmiddleinferiorgyruscerebellumcomparisonshowsincreaseaccompanieddecreasewhereaslinearcorrelationneuroanatomicalbasisformlowerpartsearlypresentpointshapingprocessestakeplaceneuralfoundationseemsufficientallowperformancesevenThuslifelongconsequencesconsistentsupportaffectedindividualseducationalprofessionalcareersgreatimportanceLongitudinalstudiesneededverifyholdsvalidgreaterinterindividualvarianceneuroanatomyCross-SectionalInvestigationBrainVolumeDyslexiadevelopmentalstructuralMRI

Similar Articles

Cited By (1)