A community and functional comparison of coral and reef fish assemblages between four decades of coastal urbanisation and thermal stress.

Katie M Cook, Hirotaka Yamagiwa, Maria Beger, Giovanni Diego Masucci, Stuart Ross, Hui Yian Theodora Lee, Rick D Stuart-Smith, James Davis Reimer
Author Information
  1. Katie M Cook: School of Biology Faculty of Biological Sciences University of Leeds Leeds UK. ORCID
  2. Hirotaka Yamagiwa: Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan.
  3. Maria Beger: School of Biology Faculty of Biological Sciences University of Leeds Leeds UK. ORCID
  4. Giovanni Diego Masucci: Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan. ORCID
  5. Stuart Ross: School of Biology Faculty of Biological Sciences University of Leeds Leeds UK.
  6. Hui Yian Theodora Lee: Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan.
  7. Rick D Stuart-Smith: Institute for Marine and Antarctic Studies University of Tasmania Taroona Tasmania Australia. ORCID
  8. James Davis Reimer: Molecular Invertebrate Systematics and Ecology Laboratory Graduate School of Engineering and Science University of the Ryukyus Nishihara Japan. ORCID

Abstract

Urbanized coral reefs experience anthropogenic disturbances caused by coastal development, pollution, and nutrient runoff, resulting in turbid, marginal conditions in which only certain species can persist. Mortality effects are exacerbated by increasingly regular thermal stress events, leading to shifts towards novel communities dominated by habitat generalists and species with low structural complexity.There is limited data on the turnover processes that occur due to this convergence of anthropogenic stressors, and how novel urban ecosystems are structured both at the community and functional levels. As such, it is unclear how they will respond to future disturbance events.Here, we examine the patterns of coral reef community change and determine whether ecosystem functions provided by specialist species are lost post-disturbance. We present a comparison of community and functional trait-based changes for scleractinian coral genera and reef fish species assemblages subject to coastal development, coastal modification, and mass bleaching between two time periods, 1975-1976 and 2018, in Nakagusuku Bay, Okinawa, Japan.We observed an increase in fish habitat generalists, a dominance shift from branching to massive/sub-massive corals and increasing site-based coral genera richness between years. Fish and coral communities significantly reassembled, but functional trait-based multivariate space remained constant, indicating a turnover of species with similar traits. A compression of coral habitat occurred, with shallow (<5 m) and deep (>8 m) coral genera shifting towards the mid-depths (5-8 m).We show that although reef species assemblages altered post disturbance, new communities retained similar ecosystem functions. This result could be linked to the stressors experienced by urban reefs, which reflect those that will occur at an increasing frequency globally in the near future. Yet, even after shifts to disturbed communities, these fully functioning reef systems may maintain high conservation value.

Keywords

Associated Data

Dryad | 10.5061/dryad.9ghx3ffk7

References

  1. Nat Commun. 2019 Mar 20;10(1):1264 [PMID: 30894534]
  2. PLoS One. 2013;8(4):e60952 [PMID: 23565291]
  3. Glob Chang Biol. 2019 Aug;25(8):2739-2750 [PMID: 31210001]
  4. Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13757-62 [PMID: 25225388]
  5. Mar Pollut Bull. 2018 Oct;135:654-681 [PMID: 30301085]
  6. Trends Ecol Evol. 2009 Nov;24(11):625-33 [PMID: 19683829]
  7. Ecol Lett. 2018 Dec;21(12):1790-1799 [PMID: 30203533]
  8. Trends Ecol Evol. 2013 Mar;28(3):167-77 [PMID: 23141923]
  9. Trends Ecol Evol. 2009 Sep;24(9):505-14 [PMID: 19595476]
  10. Proc Biol Sci. 2020 Jan 15;287(1918):20192628 [PMID: 31910784]
  11. Science. 2018 Jan 5;359(6371):80-83 [PMID: 29302011]
  12. Mar Pollut Bull. 2018 Oct;135:551-561 [PMID: 30301073]
  13. Proc Biol Sci. 2013 Nov 20;281(1774):20131835 [PMID: 24258715]
  14. Ecology. 2014 Jun;95(6):1663-73 [PMID: 25039230]
  15. Ecol Lett. 2012 Dec;15(12):1378-86 [PMID: 22938190]
  16. Glob Chang Biol. 2019 Nov;25(11):3918-3931 [PMID: 31472029]
  17. Sci Data. 2016 Mar 29;3:160017 [PMID: 27023900]
  18. Ecology. 2016 Apr;97(4):1069-80 [PMID: 27220222]
  19. Ecol Evol. 2019 Feb 18;9(6):3500-3514 [PMID: 30962908]
  20. Mar Environ Res. 2019 May;147:101-112 [PMID: 31029435]
  21. Sci Rep. 2018 Jun 26;8(1):9680 [PMID: 29946062]
  22. Mar Environ Res. 2012 Jun;77:71-83 [PMID: 22391236]
  23. Ecol Evol. 2022 Mar 22;12(3):e8736 [PMID: 35356574]
  24. J Anim Ecol. 2008 Mar;77(2):220-8 [PMID: 18081778]
  25. Nature. 2018 Apr;556(7702):492-496 [PMID: 29670282]
  26. Acute Med Surg. 2019 Nov 25;7(1):e469 [PMID: 31988781]
  27. Conserv Biol. 2007 Oct;21(5):1291-300 [PMID: 17883494]
  28. Ecol Appl. 2020 Jan;30(1):e02010 [PMID: 31556174]
  29. PLoS One. 2014 Jul 16;9(7):e102498 [PMID: 25029525]
  30. Sci Adv. 2017 Mar 01;3(3):e1601303 [PMID: 28275730]
  31. PeerJ. 2019 Sep 6;7:e7520 [PMID: 31534840]
  32. Nat Ecol Evol. 2021 May;5(5):656-662 [PMID: 33686182]
  33. Sci Rep. 2015 Jul 21;5:12407 [PMID: 26196243]
  34. Mar Pollut Bull. 2008 Mar;56(3):503-15 [PMID: 18187160]
  35. Nature. 2018 Aug;560(7716):92-96 [PMID: 30046108]
  36. Sci Rep. 2016 Nov 08;6:36260 [PMID: 27824083]
  37. Glob Chang Biol. 2018 Jul;24(7):3117-3129 [PMID: 29633512]
  38. Ecology. 2010 Jan;91(1):299-305 [PMID: 20380219]

Word Cloud

Created with Highcharts 10.0.0coralspeciescoastalcommunityfunctionalreefcommunitiesreefshabitatturnovergenerafishassemblagesanthropogenicdevelopmentthermalstresseventsshiftstowardsnovelgeneralistsoccurstressorsurbanwillfuturedisturbancechangeecosystemfunctionscomparisontrait-basedOkinawaWeincreasingsimilartraitsUrbanizedexperiencedisturbancescausedpollutionnutrientrunoffresultingturbidmarginalconditionscertaincanpersistMortalityeffectsexacerbatedincreasinglyregularleadingdominatedlowstructuralcomplexityTherelimiteddataprocessesdueconvergenceecosystemsstructuredlevelsunclearrespondHereexaminepatternsdeterminewhetherprovidedspecialistlostpost-disturbancepresentchangesscleractiniansubjectmodificationmassbleachingtwotimeperiods1975-19762018NakagusukuBayJapanobservedincreasedominanceshiftbranchingmassive/sub-massivecoralssite-basedrichnessyearsFishsignificantlyreassembledmultivariatespaceremainedconstantindicatingcompressionoccurredshallow<5 mdeep>8 mshiftingmid-depths5-8 mshowalthoughalteredpostnewretainedresultlinkedexperiencedreflectfrequencygloballynearYetevendisturbedfullyfunctioningsystemsmaymaintainhighconservationvaluefourdecadesurbanisationUrbanizationtemporal

Similar Articles

Cited By