Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators.

Akanksha Rajput, Hannah Tsunemoto, Anand V Sastry, Richard Szubin, Kevin Rychel, Joseph Sugie, Joe Pogliano, Bernhard O Palsson
Author Information
  1. Akanksha Rajput: Department of Bioengineering, University of California, San Diego, La Jolla, USA.
  2. Hannah Tsunemoto: Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
  3. Anand V Sastry: Department of Bioengineering, University of California, San Diego, La Jolla, USA.
  4. Richard Szubin: Department of Bioengineering, University of California, San Diego, La Jolla, USA.
  5. Kevin Rychel: Department of Bioengineering, University of California, San Diego, La Jolla, USA. ORCID
  6. Joseph Sugie: Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
  7. Joe Pogliano: Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
  8. Bernhard O Palsson: Department of Bioengineering, University of California, San Diego, La Jolla, USA. ORCID

Abstract

The transcriptional regulatory network (TRN) of Pseudomonas aeruginosa coordinates cellular processes in response to stimuli. We used 364 transcriptomes (281 publicly available + 83 in-house generated) to reconstruct the TRN of P. aeruginosa using independent component analysis. We identified 104 independently modulated sets of genes (iModulons) among which 81 reflect the effects of known transcriptional regulators. We identified iModulons that (i) play an important role in defining the genomic boundaries of biosynthetic gene clusters (BGCs), (ii) show increased expression of the BGCs and associated secretion systems in nutrient conditions that are important in cystic fibrosis, (iii) show the presence of a novel ribosomally synthesized and post-translationally modified peptide (RiPP) BGC which might have a role in P. aeruginosa virulence, (iv) exhibit interplay of amino acid metabolism regulation and central metabolism across different carbon sources and (v) clustered according to their activity changes to define iron and sulfur stimulons. Finally, we compared the identified iModulons of P. aeruginosa with those previously described in Escherichia coli to observe conserved regulons across two Gram-negative species. This comprehensive TRN framework encompasses the majority of the transcriptional regulatory machinery in P. aeruginosa, and thus should prove foundational for future research into its physiological functions.

References

  1. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  2. J Bacteriol. 1983 Apr;154(1):344-50 [PMID: 6339477]
  3. Database (Oxford). 2020 Dec 1;2020: [PMID: 33258965]
  4. Curr Opin Microbiol. 2004 Feb;7(1):39-44 [PMID: 15036138]
  5. Front Microbiol. 2016 Aug 30;7:1336 [PMID: 27625638]
  6. BMC Genomics. 2013 Nov 01;14:745 [PMID: 24175918]
  7. Bioinformatics. 2012 Aug 15;28(16):2184-5 [PMID: 22743226]
  8. FEMS Microbiol Lett. 2018 Mar 1;365(6): [PMID: 29401255]
  9. Front Immunol. 2018 Oct 22;9:2416 [PMID: 30405616]
  10. J Bacteriol. 2010 Oct;192(20):5534-48 [PMID: 20709898]
  11. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  12. FEMS Microbiol Rev. 2014 Jul;38(4):569-97 [PMID: 24923658]
  13. J Bacteriol. 2005 Aug;187(16):5648-57 [PMID: 16077110]
  14. J Bacteriol. 2005 Aug;187(15):5267-77 [PMID: 16030221]
  15. Mol Biol Evol. 2021 Dec 9;38(12):5825-5829 [PMID: 34597405]
  16. Nat Rev Microbiol. 2009 Sep;7(9):654-65 [PMID: 19680249]
  17. PLoS One. 2013 Dec 31;8(12):e84028 [PMID: 24391870]
  18. J Appl Physiol (1985). 2003 Dec;95(6):2444-52 [PMID: 14514700]
  19. Metab Eng. 2020 Sep;61:360-368 [PMID: 32710928]
  20. Proc Natl Acad Sci U S A. 1990 May;87(9):3464-8 [PMID: 2185470]
  21. Therap Adv Gastroenterol. 2019 Sep 16;12:1756284819870911 [PMID: 31555343]
  22. Nat Chem Biol. 2015 Sep;11(9):625-31 [PMID: 26284661]
  23. J Bacteriol. 1993 May;175(10):2907-16 [PMID: 8491711]
  24. J Bacteriol. 2001 Nov;183(21):6454-65 [PMID: 11591691]
  25. Front Cell Infect Microbiol. 2017 Oct 17;7:451 [PMID: 29090193]
  26. PLoS Biol. 2020 Dec 22;18(12):e3001026 [PMID: 33351797]
  27. Microbiol Mol Biol Rev. 2010 Dec;74(4):621-41 [PMID: 21119020]
  28. J Bacteriol. 2015 Jun 15;197(12):1988-2002 [PMID: 25845844]
  29. Nat Commun. 2019 Dec 4;10(1):5536 [PMID: 31797920]
  30. Nat Commun. 2018 Mar 15;9(1):1090 [PMID: 29545622]
  31. J Bacteriol. 2005 Feb;187(3):1074-90 [PMID: 15659685]
  32. J Biol Chem. 2019 Sep 6;294(36):13502-13514 [PMID: 31341024]
  33. mBio. 2017 Jul 18;8(4): [PMID: 28720732]
  34. Biometals. 2011 Dec;24(6):1059-67 [PMID: 21643731]
  35. FEMS Microbiol Rev. 2010 Sep;34(5):658-84 [PMID: 20412307]
  36. Brief Bioinform. 2018 Sep 28;19(5):1022-1034 [PMID: 28398567]
  37. Res Microbiol. 2011 Sep;162(7):680-8 [PMID: 21554951]
  38. Gene. 2018 Jan 10;639:1-10 [PMID: 28987343]
  39. Cell Rep. 2014 Nov 20;9(4):1235-45 [PMID: 25456126]
  40. Nat Commun. 2020 Dec 11;11(1):6338 [PMID: 33311500]
  41. Nucleic Acids Res. 2011 Jan;39(Database issue):D19-21 [PMID: 21062823]
  42. Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334 [PMID: 33290552]
  43. Environ Microbiol Rep. 2012 Oct;4(5):512-21 [PMID: 23760896]
  44. Front Microbiol. 2021 Apr 15;12:630695 [PMID: 33935991]
  45. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  46. Curr Opin Genet Dev. 2016 Apr;37:101-108 [PMID: 26950762]
  47. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62 [PMID: 26476454]
  48. J Bacteriol. 2008 Apr;190(8):2790-803 [PMID: 18192387]
  49. Adv Pharmacol. 1997;38:491-513 [PMID: 8895821]
  50. J Bacteriol. 2001 Feb;183(3):813-20 [PMID: 11208777]
  51. BMC Bioinformatics. 2021 Dec 8;22(1):584 [PMID: 34879815]
  52. Synth Syst Biotechnol. 2016 Feb 23;1(2):122-129 [PMID: 29062935]
  53. Nature. 2000 Aug 31;406(6799):959-64 [PMID: 10984043]
  54. Clin Microbiol Rev. 2019 May 29;32(3): [PMID: 31142499]
  55. J Trace Elem Med Biol. 2018 Jul;48:74-80 [PMID: 29773197]
  56. Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17228-17239 [PMID: 32616573]
  57. PLoS Genet. 2014 Feb 06;10(2):e1004122 [PMID: 24516403]
  58. J Bacteriol. 1999 Jul;181(13):4118-24 [PMID: 10383985]
  59. Bioinformatics. 2006 Aug 1;22(15):1855-62 [PMID: 16709589]
  60. Nucleic Acids Res. 2011 Nov;39(21):9130-8 [PMID: 21821657]
  61. Curr Opin Microbiol. 2006 Oct;9(5):511-9 [PMID: 16942903]
  62. Front Microbiol. 2018 Apr 06;9:683 [PMID: 29681896]
  63. Nucleic Acids Res. 2016 Jan 4;44(D1):D646-53 [PMID: 26578582]
  64. Microb Inform Exp. 2011 Jun 14;1(1):3 [PMID: 22587778]
  65. Front Microbiol. 2011 Jul 18;2:155 [PMID: 21811488]
  66. J Cyst Fibros. 2014 May;13(3):289-95 [PMID: 24369896]
  67. Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489 [PMID: 33237286]
  68. PLoS Pathog. 2019 Dec 2;15(12):e1008198 [PMID: 31790504]
  69. Mol Biol Evol. 2020 Mar 1;37(3):660-667 [PMID: 31651953]
  70. Nat Commun. 2019 Jul 3;10(1):2931 [PMID: 31270321]
  71. Commun Biol. 2021 Aug 19;4(1):991 [PMID: 34413462]
  72. Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25287-25292 [PMID: 31767748]
  73. Brief Bioinform. 2019 Jul 19;20(4):1085-1093 [PMID: 29447345]
  74. J Bacteriol. 2011 Feb;193(4):909-17 [PMID: 21169497]
  75. Infect Immun. 2016 Jul 21;84(8):2324-2335 [PMID: 27271740]
  76. J Bacteriol. 2012 Mar;194(5):1136-44 [PMID: 22194457]
  77. Nat Microbiol. 2016 Oct 31;2:16197 [PMID: 27798598]
  78. Future Microbiol. 2010 Nov;5(11):1663-74 [PMID: 21133688]
  79. Nucleic Acids Res. 2021 Jan 8;49(D1):D112-D120 [PMID: 33045728]
  80. Nucleic Acids Res. 2019 Jul 2;47(W1):W81-W87 [PMID: 31032519]
  81. Infect Immun. 2013 Aug;81(8):2705-13 [PMID: 23690403]

Grants

  1. U01 AI124316/NIAID NIH HHS

MeSH Term

Bacterial Proteins
Escherichia coli
Gene Expression Regulation, Bacterial
Machine Learning
Pseudomonas aeruginosa
Transcription Factors
Transcriptome

Chemicals

Bacterial Proteins
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0aeruginosatranscriptionalPTRNidentifiediModulonsregulatoryPseudomonastranscriptomesindependentlymodulatedsetsgenesknownregulatorsimportantroleBGCsshowassociatedmetabolismacrossnetworkcoordinatescellularprocessesresponsestimuliused364281publiclyavailable + 83in-housegeneratedreconstructusingindependentcomponentanalysis104among81reflecteffectsplaydefininggenomicboundariesbiosyntheticgeneclustersiiincreasedexpressionsecretionsystemsnutrientconditionscysticfibrosisiiipresencenovelribosomallysynthesizedpost-translationallymodifiedpeptideRiPPBGCmightvirulenceivexhibitinterplayaminoacidregulationcentraldifferentcarbonsourcesvclusteredaccordingactivitychangesdefineironsulfurstimulonsFinallycomparedpreviouslydescribedEscherichiacoliobserveconservedregulonstwoGram-negativespeciescomprehensiveframeworkencompassesmajoritymachinerythusprovefoundationalfutureresearchphysiologicalfunctionsMachinelearningidentifies

Similar Articles

Cited By