Mapping heterogenous anisotropic tissue mechanical properties with transverse isotropic nonlinear inversion MR elastography.

Matthew McGarry, Elijah Van Houten, Damian Sowinski, Dhrubo Jyoti, Daniel R Smith, Diego A Caban-Rivera, Grace McIlvain, Philip Bayly, Curtis L Johnson, John Weaver, Keith Paulsen
Author Information
  1. Matthew McGarry: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. Electronic address: matthew.d.mcgarry@dartmouth.edu.
  2. Elijah Van Houten: Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
  3. Damian Sowinski: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
  4. Dhrubo Jyoti: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
  5. Daniel R Smith: University of Delaware, Newark, DE 19716, USA.
  6. Diego A Caban-Rivera: University of Delaware, Newark, DE 19716, USA.
  7. Grace McIlvain: University of Delaware, Newark, DE 19716, USA.
  8. Philip Bayly: Washington University in St Louis, MO 63130, USA.
  9. Curtis L Johnson: University of Delaware, Newark, DE 19716, USA.
  10. John Weaver: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
  11. Keith Paulsen: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.

Abstract

The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle.

Keywords

References

  1. IEEE Trans Med Imaging. 2017 Jan;36(1):236-250 [PMID: 27608454]
  2. Neuroradiology. 2017 Jan;59(1):61-67 [PMID: 27889837]
  3. Neuroimage. 2018 May 1;171:99-106 [PMID: 29317306]
  4. Neuroimage. 2013 Oct 1;79:145-52 [PMID: 23644001]
  5. Med Phys. 2012 Oct;39(10):6388-96 [PMID: 23039674]
  6. NMR Biomed. 2011 May;24(4):385-92 [PMID: 20931563]
  7. J Biomech. 2015 Nov 26;48(15):4002-4009 [PMID: 26476762]
  8. Neuroimage. 2002 Oct;17(2):825-41 [PMID: 12377157]
  9. Radiology. 2007 Nov;245(2):458-66 [PMID: 17940304]
  10. J Biomech Eng. 2020 Jul 1;142(7): [PMID: 32006012]
  11. Science. 1995 Sep 29;269(5232):1854-7 [PMID: 7569924]
  12. Neuroimage. 2016 May 15;132:534-541 [PMID: 26931816]
  13. NMR Biomed. 2018 Oct;31(10):e3848 [PMID: 29106765]
  14. J Acoust Soc Am. 2018 Oct;144(4):2312 [PMID: 30404507]
  15. Magn Reson Med. 2007 Aug;58(2):346-53 [PMID: 17654577]
  16. IEEE Trans Med Imaging. 2013 Oct;32(10):1901-9 [PMID: 23797239]
  17. Hum Brain Mapp. 2016 Dec;37(12):4221-4233 [PMID: 27401228]
  18. Proc Math Phys Eng Sci. 2019 Apr;475(2224):20180736 [PMID: 31105452]
  19. Neuroimage. 2009 Jul 1;46(3):652-7 [PMID: 19281851]
  20. Top Magn Reson Imaging. 2018 Oct;27(5):319-333 [PMID: 30289828]
  21. J Mech Behav Biomed Mater. 2013 Jul;23:117-32 [PMID: 23680651]
  22. Neurobiol Aging. 2018 May;65:158-167 [PMID: 29494862]
  23. Phys Med Biol. 2021 Feb 26;66(5): [PMID: 32512548]
  24. J Magn Reson Imaging. 2011 Sep;34(3):494-8 [PMID: 21751286]
  25. Magn Reson Med. 2016 Aug;76(2):645-62 [PMID: 26417988]
  26. PLoS One. 2013 Dec 02;8(12):e81668 [PMID: 24312570]
  27. Magn Reson Imaging. 2012 May;30(4):535-9 [PMID: 22326238]
  28. IEEE Trans Med Imaging. 2019 Jul;38(7):1578-1587 [PMID: 30703013]
  29. Cereb Cortex. 2021 May 10;31(6):2799-2811 [PMID: 33454745]
  30. Med Phys. 2000 Jan;27(1):101-7 [PMID: 10659743]
  31. Magn Reson Med. 2005 Feb;53(2):372-87 [PMID: 15678538]
  32. J Cogn Neurosci. 2020 Sep;32(9):1704-1713 [PMID: 32379003]
  33. J Mech Behav Biomed Mater. 2018 Mar;79:30-37 [PMID: 29253729]
  34. Magn Reson Med. 2014 Dec;72(6):1755-61 [PMID: 24347290]
  35. J Cogn Neurosci. 2019 Dec;31(12):1857-1872 [PMID: 31393232]
  36. J Child Neurol. 2020 Jun;35(7):463-471 [PMID: 32202191]
  37. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  38. Phys Med Biol. 2018 Jul 19;63(14):145021 [PMID: 29877194]
  39. AJR Am J Roentgenol. 2017 Aug;209(2):403-408 [PMID: 28570101]
  40. J Magn Reson Imaging. 2013 Jan;37(1):217-26 [PMID: 22987805]
  41. Neuroimage Clin. 2019;22:101750 [PMID: 30870734]
  42. Int J Numer Method Biomed Eng. 2018 Jun;34(6):e2979 [PMID: 29528568]
  43. Acad Radiol. 2021 Apr;28(4):457-466 [PMID: 32331966]
  44. NMR Biomed. 2013 Nov;26(11):1387-94 [PMID: 23640745]
  45. IEEE Trans Med Imaging. 2004 Nov;23(11):1404-16 [PMID: 15554128]
  46. Brain Imaging Behav. 2020 Feb;14(1):175-185 [PMID: 30382528]
  47. Radiology. 2018 Mar;286(3):738-763 [PMID: 29461949]
  48. Med Image Anal. 2001 Dec;5(4):237-54 [PMID: 11731304]
  49. Neuroimage. 2010 Feb 1;49(3):2520-5 [PMID: 19539039]
  50. J Biomech. 2016 May 3;49(7):1042-1049 [PMID: 26920505]
  51. J Exp Neurosci. 2019 Apr 07;13:1179069519840444 [PMID: 31001064]
  52. J Mech Behav Biomed Mater. 2016 Jun;59:538-546 [PMID: 27032311]
  53. Brain Commun. 2020;2(1):fcz049 [PMID: 31998866]
  54. Magn Reson Med. 2001 May;45(5):827-37 [PMID: 11323809]
  55. Magn Reson Med. 2012 Nov;68(5):1410-22 [PMID: 22252792]
  56. Med Phys. 2011 Apr;38(4):1993-2004 [PMID: 21626932]
  57. Phys Med Biol. 2011 Jul 7;56(13):N153-64 [PMID: 21654044]
  58. Magn Reson Med. 2008 Aug;60(2):373-9 [PMID: 18666132]
  59. PLoS One. 2012;7(1):e29888 [PMID: 22276134]
  60. Med Image Anal. 2021 Dec;74:102212 [PMID: 34587584]

Grants

  1. R01 EB027577/NIBIB NIH HHS

MeSH Term

Anisotropy
Brain
Diffusion Tensor Imaging
Elasticity Imaging Techniques
Humans
Magnetic Resonance Imaging
White Matter

Word Cloud

Created with Highcharts 10.0.0MREtissueisotropicmatteranisotropicmechanicalTI-NLIwhitebrainvivopropertiescanusinginversionbehaviorelastographytransversenonlinearshearanisotropyestimatedaccuracytechniqueclinicaltractsconsisthighly-alignedmyelinatedfibersstructurallyexpectedexhibitimagedmagneticresonancedetectmonitornaturaldiseaseprocessesaffectstructurehoweveralgorithmsassumelocallyhomogenousand/orcauseartifactsregionsheterogeneousmodel-basedimplementationsubzone-baseddemonstratedreconstructsaccuratemapsmodulusdampingratiotensilestandardmotionmeasurementsfiberdirectionsdiffusiontensorimagingDTIinvestigatedsyntheticdatacontrolledrealisticsettings:excellentquantitativespatialobservedcross-talkparametersminimalTenrepeatedscansacquiredhealthysubjectco-registereddemonstraterepeatabilityGoodresolutionanatomicalstructuresbilateralsymmetryevidentimagespropertytypesRepeatabilitysimilarmethodswellwithinlimitsrequiredsuccesspromisingnewresearchtissuesmuscleMappingheterogenousMRAnisotropicBrainmechanicsElastographyTransverseWhite

Similar Articles

Cited By