Changes in Specific Biomarkers Indicate Cardiac Adaptive and Anti-inflammatory Response of Repeated Recreational SCUBA Diving.

Jerka Dumić, Ana Cvetko, Irena Abramović, Sandra Šupraha Goreta, Antonija Perović, Marina Njire Bratičević, Domagoj Kifer, Nino Sinčić, Olga Gornik, Marko Žarak
Author Information
  1. Jerka Dumić: Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
  2. Ana Cvetko: Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
  3. Irena Abramović: Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia.
  4. Sandra Šupraha Goreta: Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
  5. Antonija Perović: Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia.
  6. Marina Njire Bratičević: Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia.
  7. Domagoj Kifer: Department of Biophysics, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
  8. Nino Sinčić: Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia.
  9. Olga Gornik: Department of Biochemistry and Molecular Biology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia.
  10. Marko Žarak: Clinical Department of Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia.

Abstract

Objective: Recreational SCUBA (rSCUBA) diving has become a highly popular and widespread sport. Yet, information on molecular events underlying (patho)physiological events that follow exposure to the specific environmental conditions (hyperbaric conditions, coldness, immersion, and elevated breathing pressure), in which rSCUBA diving is performed, remain largely unknown. Our previous study suggested that repeated rSCUBA diving triggers an adaptive response of cardiovascular and immune system. To elucidate further molecular events underlying cardiac and immune system adaptation and to exclude possible adverse effects we measured blood levels of specific cardiac and inflammation markers.
Methods: This longitudinal intervention study included fourteen recreational divers who performed five dives, one per week, on the depth 20-30 m that lasted 30 min, after the non-dive period of 5 months. Blood samples were taken immediately before and after the first, third, and fifth dives. Copeptin, immunoglobulins A, G and M, complement components C3 and C4, and differential blood count parameters, including neutrophil-to-lymphocyte ratio (NLR) were determined using standard laboratory methods. Cell-free DNA was measured by qPCR analysis and N-glycans released from IgG and total plasma proteins (TPP), were analyzed by hydrophilic interaction ultra-performance liquid chromatography.
Results: Copeptin level increased after the first dive but decreased after the third and fifth dive. Increases in immunoglobulins level after every dive and during whole studied period were observed, but no changes in C3, C4, and cfDNA level were detected. NLR increased only after the first dive. IgG and TPP N-glycosylation alterations toward anti-inflammatory status over whole studied period were manifested as an increase in monogalyctosylated and core-fucosylated IgG N-glycans and decrease in agalactosylated TPP N-glycans.
Conclusion: rSCUBA diving practiced on a regular basis promotes anti-inflammatory status thus contributing cardioprotection and conferring multiple health benefits.

Keywords

References

  1. Br J Sports Med. 2006 Feb;40(2):124-7 [PMID: 16431998]
  2. J Lipid Res. 2005 Jul;46(7):1353-63 [PMID: 15897601]
  3. Clin Biochem. 2018 Feb;52:8-12 [PMID: 29079359]
  4. Sci Rep. 2019 Nov 4;9(1):15970 [PMID: 31685910]
  5. J Mol Cell Cardiol. 2016 Feb;91:188-200 [PMID: 26772531]
  6. Int J Sports Physiol Perform. 2017 May;12(5):597-604 [PMID: 27617485]
  7. Aust J Sci Med Sport. 1997 Dec;29(4):95-8 [PMID: 9428989]
  8. Cancer Res. 2007 Oct 1;67(19):9364-70 [PMID: 17909045]
  9. Oxid Med Cell Longev. 2013;2013:825928 [PMID: 23983900]
  10. J Hypertens. 2021 Dec 1;39(12):2527-2533 [PMID: 34285147]
  11. Heart. 2010 Mar;96(5):339-46 [PMID: 20197361]
  12. Diabetes. 2005 Feb;54(2):570-5 [PMID: 15677517]
  13. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12669-74 [PMID: 21768335]
  14. Clin Biochem. 2014 Apr;47(6):471-4 [PMID: 24373926]
  15. Nat Prod Res. 2014;28(6):407-10 [PMID: 24423008]
  16. Front Cell Dev Biol. 2021 Sep 06;9:686149 [PMID: 34552921]
  17. Clin Chim Acta. 2020 Apr;503:145-150 [PMID: 31978408]
  18. J Thorac Dis. 2020 Feb;12(Suppl 1):S16-S21 [PMID: 32148922]
  19. Phytother Res. 2021 Oct;35(10):5596-5622 [PMID: 34390063]
  20. Diving Hyperb Med. 2021 Jun 30;51(2):140-146 [PMID: 34157728]
  21. Free Radic Res. 2018 Feb;52(2):188-197 [PMID: 29334806]
  22. J Appl Physiol (1985). 1988 Jan;64(1):1-10 [PMID: 3281926]
  23. Medicine (Baltimore). 2018 Jun;97(26):e11138 [PMID: 29952958]
  24. Diabetologia. 2017 Dec;60(12):2352-2360 [PMID: 28905229]
  25. Prog Mol Biol Transl Sci. 2015;135:355-80 [PMID: 26477922]
  26. J Cell Physiol. 2018 Oct;233(10):6550-6564 [PMID: 29030990]
  27. J Appl Physiol (1985). 2009 Jan;106(1):276-83 [PMID: 19036887]
  28. Int J Sports Med. 1989 Apr;10(2):124-8 [PMID: 2722325]
  29. Cell Immunol. 2018 Nov;333:65-79 [PMID: 30107893]
  30. FASEB J. 2003 May;17(8):884-6 [PMID: 12626436]
  31. Circ Res. 2018 May 25;122(11):1555-1564 [PMID: 29535164]
  32. Oxid Med Cell Longev. 2017;2017:5608287 [PMID: 28642810]
  33. Nephron Physiol. 2011;118(2):45-51 [PMID: 21196778]
  34. Circ Res. 2014 May 23;114(11):1743-56 [PMID: 24855199]
  35. Med Sci Sports Exerc. 2013 Feb;45(2):238-44 [PMID: 22903136]
  36. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15983-7 [PMID: 12444247]
  37. Medicine (Baltimore). 2016 Jun;95(26):e4060 [PMID: 27368044]
  38. Neuro Endocrinol Lett. 2005 Aug;26(4):361-6 [PMID: 16136008]
  39. Front Immunol. 2021 Apr 14;12:631873 [PMID: 33936044]
  40. Metabolism. 2010 May;59(5):628-34 [PMID: 19913840]
  41. Front Mol Biosci. 2021 Nov 16;8:751637 [PMID: 34869586]
  42. Mol Cell Proteomics. 2011 Oct;10(10):M111.010090 [PMID: 21653738]
  43. Nat Med. 1995 Mar;1(3):237-43 [PMID: 7585040]
  44. Oncotarget. 2017 May 9;8(19):32171-32189 [PMID: 28418870]
  45. Crit Care. 2008;12(2):117 [PMID: 18355399]
  46. J Appl Physiol (1985). 2020 Sep 1;129(3):612-625 [PMID: 32702269]
  47. Exerc Immunol Rev. 2020;26:8-22 [PMID: 32139352]
  48. Clin J Sport Med. 2011 May;21(3):211-7 [PMID: 21519298]
  49. Heart Lung. 2013 Nov-Dec;42(6):436-41 [PMID: 23981470]
  50. Am J Physiol. 1997 Jul;273(1 Pt 2):R259-64 [PMID: 9249558]
  51. FEBS Lett. 2019 Nov;593(21):2966-2976 [PMID: 31509238]
  52. Nat Rev Endocrinol. 2012 Apr 03;8(8):457-65 [PMID: 22473333]
  53. J Clin Endocrinol Metab. 2007 Oct;92(10):3973-8 [PMID: 17635944]
  54. PLoS One. 2017 Sep 14;12(9):e0184668 [PMID: 28910365]
  55. Biochem Med (Zagreb). 2013;23(2):172-90 [PMID: 23894863]
  56. Poult Sci. 2020 Feb;99(2):906-913 [PMID: 32029167]
  57. Br J Sports Med. 2004 Oct;38(5):617-21 [PMID: 15388551]
  58. Clin Appl Thromb Hemost. 2016 Jul;22(5):405-11 [PMID: 25667237]
  59. Physiol Rev. 2008 Oct;88(4):1379-406 [PMID: 18923185]
  60. J Clin Pathol. 2020 Sep;73(9):535-543 [PMID: 32616540]
  61. Sci Rep. 2019 Dec 23;9(1):19673 [PMID: 31873162]
  62. Eur J Appl Physiol. 2008 Nov;104(4):711-7 [PMID: 18651163]
  63. Front Physiol. 2020 Jan 09;10:1550 [PMID: 31992987]
  64. Trends Immunol. 2017 May;38(5):358-372 [PMID: 28385520]
  65. Int J Sports Med. 1992 Feb;13(2):172-5 [PMID: 1555909]
  66. Molecules. 2021 Apr 02;26(7): [PMID: 33918290]
  67. Glycobiology. 2021 Dec 22;: [PMID: 34939124]
  68. Biochem Med (Zagreb). 2017 Jun 15;27(2):325-331 [PMID: 28694723]
  69. Molecules. 2016 May 12;21(5): [PMID: 27187333]
  70. J Biol Chem. 2010 Jan 29;285(5):3133-44 [PMID: 19940131]
  71. Cancer Res. 2001 Feb 15;61(4):1659-65 [PMID: 11245480]
  72. J Sport Health Sci. 2019 May;8(3):201-217 [PMID: 31193280]
  73. Arch Intern Med. 1998 Jul 13;158(13):1434-9 [PMID: 9665352]
  74. Clin Chem Lab Med. 2012 Jan 06;50(2):243-53 [PMID: 22505543]
  75. Food Chem. 2019 Nov 30;299:125124 [PMID: 31288163]
  76. Cell Rep. 2020 Jun 30;31(13):107830 [PMID: 32610131]
  77. Eur J Appl Physiol. 2014 Apr;114(4):815-24 [PMID: 24390725]
  78. Eur J Appl Physiol. 2020 Jul;120(7):1689-1697 [PMID: 32488585]
  79. Biochem Biophys Res Commun. 2000 Jul 14;273(3):1150-5 [PMID: 10891387]
  80. Sci Rep. 2019 Sep 16;9(1):13320 [PMID: 31527725]
  81. J Physiol. 2007 Apr 15;580(Pt. 2):677-84 [PMID: 17272339]
  82. Methods Mol Biol. 2019;1909:183-197 [PMID: 30580432]
  83. Medicine (Baltimore). 2019 Oct;98(43):e17537 [PMID: 31651856]
  84. Occup Med (Lond). 2017 Jul 01;67(5):371-376 [PMID: 28525588]
  85. Croat Med J. 2016 Jun 30;57(3):287-92 [PMID: 27374830]
  86. Free Radic Biol Med. 2012 Jan 15;52(2):281-90 [PMID: 22085655]
  87. Med Sci Sports Exerc. 2011 Dec;43(12):2396-404 [PMID: 21606866]
  88. Front Physiol. 2019 Dec 20;10:1522 [PMID: 31920720]
  89. Exerc Immunol Rev. 2011;17:6-63 [PMID: 21446352]
  90. JAMA. 2011 May 25;305(20):2088-95 [PMID: 21610241]
  91. Biochem Med (Zagreb). 2014;24(2):235-47 [PMID: 24969917]
  92. Circulation. 2003 Jan 28;107(3):499-511 [PMID: 12551878]
  93. EBioMedicine. 2016 Jul;9:372-380 [PMID: 27333022]
  94. Arch Virol. 2017 Sep;162(9):2539-2551 [PMID: 28547385]
  95. N Engl J Med. 2007 May 17;356(20):2064-72 [PMID: 17507705]
  96. Aerosp Med. 1972 Jun;43(6):592-8 [PMID: 5035546]
  97. Atherosclerosis. 2018 Oct;277:1-6 [PMID: 30170218]
  98. Glycoconj J. 2018 Feb;35(1):15-29 [PMID: 28905148]
  99. J Appl Physiol (1985). 2007 Nov;103(5):1728-35 [PMID: 17717114]
  100. Bratisl Lek Listy. 2021;122(7):474-488 [PMID: 34161115]
  101. Sports Med. 2021 Dec 8;: [PMID: 34878641]
  102. J Appl Physiol (1985). 2014 Jul 15;117(2):119-30 [PMID: 24876361]
  103. Aging (Albany NY). 2009 Aug 15;1(9):771-83 [PMID: 20157566]
  104. Pediatr Res. 2020 Jan;87(1):88-94 [PMID: 31404919]
  105. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14447-52 [PMID: 18794531]
  106. Eur J Clin Invest. 2014 Jun;44(6):587-96 [PMID: 24754458]
  107. Nat Med. 2012 Sep;18(9):1401-6 [PMID: 22922409]
  108. Physiol Rep. 2021 Jan;9(2):e14691 [PMID: 33463896]
  109. J Am Coll Cardiol. 2005 May 17;45(10):1638-43 [PMID: 15893180]
  110. Pediatr Res. 2018 Nov;84(5):704-712 [PMID: 30166642]
  111. Bioinformatics. 2008 May 1;24(9):1214-6 [PMID: 18344517]
  112. PLoS One. 2019 May 31;14(5):e0217800 [PMID: 31150497]
  113. Inflamm Bowel Dis. 2015 Jun;21(6):1237-47 [PMID: 25895110]
  114. Neuro Endocrinol Lett. 2006 Feb-Apr;27(1-2):271-6 [PMID: 16648800]
  115. Circulation. 2009 Aug 4;120(5):417-26 [PMID: 19620499]
  116. Oxid Med Cell Longev. 2016;2016:9831825 [PMID: 26788256]
  117. Molecules. 2021 Jun 30;26(13): [PMID: 34209338]
  118. Eur J Appl Physiol. 2010 Nov;110(4):695-701 [PMID: 20577758]
  119. Circ Res. 2007 May 25;100(10):1512-21 [PMID: 17446436]
  120. Eur J Clin Invest. 2006 Nov;36(11):771-8 [PMID: 17032344]
  121. Cell Metab. 2005 Jan;1(1):15-25 [PMID: 16054041]
  122. J Clin Med. 2020 Jul 23;9(8): [PMID: 32717972]
  123. EBioMedicine. 2016 Jul;9:29-30 [PMID: 27381475]
  124. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):3485-3490 [PMID: 28289219]
  125. Rheumatol Int. 1992;12(5):191-4 [PMID: 1290021]
  126. Biosci Rep. 2018 Jul 18;38(4): [PMID: 30021848]
  127. Am J Physiol Endocrinol Metab. 2003 Aug;285(2):E433-7 [PMID: 12857678]
  128. Am J Cardiol. 2007 Apr 1;99(7):890-5 [PMID: 17398178]
  129. Nat Rev Rheumatol. 2017 Oct;13(10):621-630 [PMID: 28905852]
  130. Int J Mol Sci. 2019 Oct 08;20(19): [PMID: 31597283]
  131. J Appl Physiol (1985). 1992 Aug;73(2):539-44 [PMID: 1399978]
  132. Mol Pharmacol. 2017 Sep;92(3):278-284 [PMID: 28193640]

Word Cloud

Created with Highcharts 10.0.0rSCUBAdivingdiveSCUBAeventsperiodfirstC3C4NLRN-glycansIgGTPPlevelRecreationalmolecularunderlyingspecificconditionsperformedstudyimmunesystemcardiacmeasuredbloodrecreationaldivesthirdfifthCopeptinimmunoglobulinscomplementneutrophil-to-lymphocyteDNAincreasedwholestudiedN-glycosylationanti-inflammatorystatusObjective:becomehighlypopularwidespreadsportYetinformationpathophysiologicalfollowexposureenvironmentalhyperbariccoldnessimmersionelevatedbreathingpressureremainlargelyunknownprevioussuggestedrepeatedtriggersadaptiveresponsecardiovascularelucidateadaptationexcludepossibleadverseeffectslevelsinflammationmarkersMethods:longitudinalinterventionincludedfourteendiversfiveoneperweekdepth20-30mlasted30minnon-dive5monthsBloodsamplestakenimmediatelyGMcomponentsdifferentialcountparametersincludingratiodeterminedusingstandardlaboratorymethodsCell-freeqPCRanalysisreleasedtotalplasmaproteinsanalyzedhydrophilicinteractionultra-performanceliquidchromatographyResults:decreasedIncreaseseveryobservedchangescfDNAdetectedalterationstowardmanifestedincreasemonogalyctosylatedcore-fucosylateddecreaseagalactosylatedConclusion:practicedregularbasispromotesthuscontributingcardioprotectionconferringmultiplehealthbenefitsChangesSpecificBiomarkersIndicateCardiacAdaptiveAnti-inflammatoryResponseRepeatedDivingcell-freecopeptinCPPimmunoglobulinration

Similar Articles

Cited By