Linear mixed models to handle missing at random data in trial-based economic evaluations.

Andrea Gabrio, Catrin Plumpton, Sube Banerjee, Baptiste Leurent
Author Information
  1. Andrea Gabrio: Department of Methodology and Statistics, Faculty of Health Medicine and Life Science, Maastricht University, Maastricht, The Netherlands. ORCID
  2. Catrin Plumpton: Centre for Health Economics and Medicines Evaluation, Bangor University, Bangor, UK. ORCID
  3. Sube Banerjee: Faculty of Health, University of Plymouth, Plymouth, UK. ORCID
  4. Baptiste Leurent: Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK. ORCID

Abstract

Trial-based cost-effectiveness analyses (CEAs) are an important source of evidence in the assessment of health interventions. In these studies, cost and effectiveness outcomes are commonly measured at multiple time points, but some observations may be missing. Restricting the analysis to the participants with complete data can lead to biased and inefficient estimates. Methods, such as multiple imputation, have been recommended as they make better use of the data available and are valid under less restrictive Missing At Random (MAR) assumption. Linear mixed effects models (LMMs) offer a simple alternative to handle missing data under MAR without requiring imputations, and have not been very well explored in the CEA context. In this manuscript, we aim to familiarize readers with LMMs and demonstrate their implementation in CEA. We illustrate the approach on a randomized trial of antidepressants, and provide the implementation code in R and Stata. We hope that the more familiar statistical framework associated with LMMs, compared to other missing data approaches, will encourage their implementation and move practitioners away from inadequate methods.

Keywords

References

  1. Value Health. 2015 Mar;18(2):161-72 [PMID: 25773551]
  2. Stat Med. 2019 Feb 10;38(3):480-496 [PMID: 30298525]
  3. Stat Med. 2019 Jan 30;38(2):210-220 [PMID: 30207407]
  4. Health Econ. 2020 Feb;29(2):171-184 [PMID: 31845455]
  5. Health Econ. 2018 Nov;27(11):1670-1683 [PMID: 29969834]
  6. Br J Psychiatry. 2013 Feb;202:121-8 [PMID: 23258767]
  7. Health Econ. 1997 Nov-Dec;6(6):561-75 [PMID: 9466139]
  8. Stat Med. 2019 Apr 15;38(8):1399-1420 [PMID: 30565727]
  9. Lancet. 2011 Jul 30;378(9789):403-11 [PMID: 21764118]
  10. Pharmacoeconomics. 2014 Dec;32(12):1157-70 [PMID: 25069632]
  11. Health Econ. 2005 May;14(5):471-85 [PMID: 15386662]
  12. Health Econ. 2005 Dec;14(12):1217-29 [PMID: 15945043]
  13. Pharmacoecon Open. 2017 Jun;1(2):79-97 [PMID: 29442336]
  14. Pharmacoeconomics. 2018 Aug;36(8):889-901 [PMID: 29679317]
  15. Health Econ. 2012 Feb;21(2):187-200 [PMID: 22223561]
  16. Biostatistics. 2004 Jul;5(3):445-64 [PMID: 15208205]
  17. Health Technol Assess. 2013 Feb;17(7):1-166 [PMID: 23438937]
  18. Psychol Methods. 2002 Jun;7(2):147-77 [PMID: 12090408]
  19. Med Decis Making. 2012 Jan-Feb;32(1):209-20 [PMID: 21610256]
  20. Health Econ. 1994 Sep-Oct;3(5):309-19 [PMID: 7827647]
  21. Med Decis Making. 1990 Jul-Sep;10(3):212-4 [PMID: 2115096]
  22. N Engl J Med. 2012 Oct 4;367(14):1355-60 [PMID: 23034025]
  23. Health Econ. 2022 Jun;31(6):1276-1287 [PMID: 35368119]
  24. J R Stat Soc Ser A Stat Soc. 2020 Feb;183(2):607-629 [PMID: 34385761]
  25. Stat Med. 2005 Apr 15;24(7):993-1007 [PMID: 15570623]
  26. Med Care. 1997 Nov;35(11):1095-108 [PMID: 9366889]
  27. Health Econ. 2018 Jun;27(6):1024-1040 [PMID: 29573044]

Grants

  1. MR/R010161/1/Medical Research Council

MeSH Term

Cost-Benefit Analysis
Data Interpretation, Statistical
Databases, Factual
Humans
Linear Models
Models, Statistical

Word Cloud

Created with Highcharts 10.0.0datamissingLMMsimplementationcost-effectivenessmultipleanalysisMARLinearmixedmodelshandleCEArandomizedtrialTrial-basedanalysesCEAsimportantsourceevidenceassessmenthealthinterventionsstudiescosteffectivenessoutcomescommonlymeasuredtimepointsobservationsmayRestrictingparticipantscompletecanleadbiasedinefficientestimatesMethodsimputationrecommendedmakebetteruseavailablevalidlessrestrictiveMissingRandomassumptioneffectsoffersimplealternativewithoutrequiringimputationswellexploredcontextmanuscriptaimfamiliarizereadersdemonstrateillustrateapproachantidepressantsprovidecodeRStatahopefamiliarstatisticalframeworkassociatedcomparedapproacheswillencouragemovepractitionersawayinadequatemethodsrandomtrial-basedeconomicevaluationsmixed-effectsrepeatedmeasuresmodel

Similar Articles

Cited By