Integrated LC-MS/MS and Transcriptome Sequencing Analysis Reveals the Mechanism of Color Formation During Prickly Ash Fruit Ripening.

Xitong Fei, Yuan Wei, Yichen Qi, Yingli Luo, Haichao Hu, Anzhi Wei
Author Information
  1. Xitong Fei: College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China.
  2. Yuan Wei: Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China.
  3. Yichen Qi: College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China.
  4. Yingli Luo: College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China.
  5. Haichao Hu: College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China.
  6. Anzhi Wei: College of Forestry, Northwest Agriculture and Forestry University, Xianyang, China.

Abstract

Prickly ash peel is one of the eight major condiments in China and is widely used in cooking because of its unique fragrance and numbing taste. The color of prickly ash fruit is the most intuitive quality that affects consumer choice. However, the main components and key biosynthetic genes responsible for prickly ash fruit color have not yet been determined. To better understand the biosynthetic mechanisms and accumulation of prickly ash fruit color components, we performed an integrated transcriptomic and metabolomic analysis of red and green prickly ash fruit at different growth periods. The transcriptome analysis identified 17,269 differentially expressed genes (DEGs) between fruit of red and green prickly ash: 7,236 upregulated in green fruit and 10,033 downregulated. Liquid chromatography tandem mass spectrometry (LC-MS/MS) identified 214 flavonoids of 10 types. Flavonoids and flavonols are the main flavonoids in prickly ash, and the total flavonoid content of red prickly ash is higher than that of green prickly ash. Comprehensive analysis showed that the main colored metabolites that differed between green and red prickly ash were cyanidin-3-O-galactoside and cyanidin-3-O-glucoside, and differences in the contents of these metabolites were due mainly to differences in the expression of and . Our results provide insight into the mechanisms underlying color differences in red and green prickly ash and will be useful for improving the quality of prickly ash fruit.

Keywords

References

  1. Curr Opin Biotechnol. 2008 Apr;19(2):190-7 [PMID: 18406131]
  2. Mol Genet Genomics. 2014 Oct;289(5):783-93 [PMID: 24748075]
  3. Front Plant Sci. 2021 Jan 13;11:613677 [PMID: 33519871]
  4. Compr Rev Food Sci Food Saf. 2013 Sep;12(5):483-508 [PMID: 33412667]
  5. Plant J. 2008 May;54(4):733-49 [PMID: 18476875]
  6. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  7. Front Plant Sci. 2014 Jul 17;5:336 [PMID: 25101096]
  8. Gene. 2020 Feb 20;728:144284 [PMID: 31838251]
  9. Front Chem. 2018 Mar 09;6:52 [PMID: 29594099]
  10. J Plant Physiol. 2015 Mar 1;175:1-8 [PMID: 25437348]
  11. Analyst. 2009 Oct;134(10):2003-11 [PMID: 19768207]
  12. Plant Physiol. 2018 Feb;176(2):1862-1878 [PMID: 29192027]
  13. Plant Cell. 1995 Jul;7(7):1071-1083 [PMID: 12242398]
  14. Food Chem. 2019 Jan 15;271:18-28 [PMID: 30236664]
  15. Plant Physiol. 1997 Apr;113(4):1437-45 [PMID: 9112784]
  16. Curr Biol. 2013 Jun 17;23(12):1094-100 [PMID: 23707429]
  17. Mol Divers. 2014 Aug;18(3):687-700 [PMID: 24792223]
  18. J Agric Food Chem. 2019 Dec 4;67(48):13258-13268 [PMID: 31714769]
  19. Mol Plant. 2013 Nov;6(6):1769-80 [PMID: 23702596]
  20. Nat Biotechnol. 2013 Feb;31(2):160-5 [PMID: 23292609]
  21. Mol Biol Rep. 2012 Jun;39(6):6409-15 [PMID: 22447536]
  22. Plant Physiol Biochem. 2019 Mar;136:178-187 [PMID: 30685697]
  23. Trends Plant Sci. 2013 Sep;18(9):477-83 [PMID: 23870661]
  24. Mol Nutr Food Res. 2012 Jan;56(1):159-70 [PMID: 22102523]
  25. J Toxicol Sci. 2002 Feb;27(1):57-68 [PMID: 11915369]
  26. Front Plant Sci. 2017 Mar 10;8:341 [PMID: 28344589]
  27. Sci Rep. 2017 May 31;7(1):2580 [PMID: 28566751]
  28. Mol Plant. 2020 Jan 6;13(1):42-58 [PMID: 31678614]
  29. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  30. New Phytol. 2013 Nov;200(3):650-655 [PMID: 24102530]
  31. New Phytol. 2015 May;206(3):948-964 [PMID: 25659829]
  32. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 [PMID: 9847135]
  33. J Proteome Res. 2005 Sep-Oct;4(5):1826-31 [PMID: 16212438]
  34. Minerva Cardioangiol. 2015 Apr;63(2 Suppl 1):1-12 [PMID: 25892567]
  35. Bioinformatics. 2005 Oct 1;21(19):3787-93 [PMID: 15817693]
  36. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  37. J Agric Food Chem. 2019 Aug 14;67(32):8783-8793 [PMID: 31310107]
  38. BMC Ecol. 2020 Aug 11;20(1):46 [PMID: 32782004]
  39. Gene. 2018 Mar 30;648:31-41 [PMID: 29309888]
  40. J Agric Food Chem. 2020 Dec 23;68(51):15186-15198 [PMID: 33300333]
  41. Food Chem. 2016 Jan 1;190:317-323 [PMID: 26212976]

Word Cloud

Created with Highcharts 10.0.0ashpricklyfruitgreencolorredmainanalysisdifferencesPricklyqualitycomponentsbiosyntheticgenesmechanismsidentified10LC-MS/MSflavonoidsflavonoidmetabolitespeeloneeightmajorcondimentsChinawidelyusedcookinguniquefragrancenumbingtasteintuitiveaffectsconsumerchoiceHoweverkeyresponsibleyetdeterminedbetterunderstandaccumulationperformedintegratedtranscriptomicmetabolomicdifferentgrowthperiodstranscriptome17269differentiallyexpressedDEGsash:7236upregulated033downregulatedLiquidchromatographytandemmassspectrometry214typesFlavonoidsflavonolstotalcontenthigherComprehensiveshowedcoloreddifferedcyanidin-3-O-galactosidecyanidin-3-O-glucosidecontentsduemainlyexpressionresultsprovideinsightunderlyingwillusefulimprovingIntegratedTranscriptomeSequencingAnalysisRevealsMechanismColorFormationAshFruitRipeningANSUFGTWGCNAanthocyaninssynthesispathway

Similar Articles

Cited By