Discovery of Novel HPK1 Inhibitors Through Structure-Based Virtual Screening.

Huizhen Ge, Lizeng Peng, Zhou Sun, Huanxiang Liu, Yulin Shen, Xiaojun Yao
Author Information
  1. Huizhen Ge: College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
  2. Lizeng Peng: Institute of Agro-Food Science and Technology Shandong Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Jinan, China.
  3. Zhou Sun: Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
  4. Huanxiang Liu: School of Pharmacy, Lanzhou University, Lanzhou, China.
  5. Yulin Shen: Gansu Computing Center, Lanzhou, China.
  6. Xiaojun Yao: College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.

Abstract

Hematopoietic progenitor kinase (HPK1) is a negative regulator of T-cell receptor and B-cell signaling, which has been recognized as a novel antitumor target for immunotherapy. In this work, Glide docking-based virtual screening and kinase inhibition assay were performed to identify novel HPK1 inhibitors. The kinase inhibition assay results demonstrated five compounds with IC values below 20 ��M, and the most potent one (compound M074-2865) had an IC value of 2.93 �� 0.09 ��M. Molecular dynamics (MD) simulations were performed to delve into the interaction of sunitinib and the identified compound M074-2865 with the kinase domain of HPK1. The five compounds identified in this work could be considered promising hit compounds for further development of HPK1 inhibitors for immunotherapy.

Keywords

References

  1. ACS Med Chem Lett. 2021 Apr 13;12(5):681-682 [PMID: 34055207]
  2. Biochemistry. 2021 Oct 19;60(41):3114-3124 [PMID: 34608799]
  3. J Comput Aided Mol Des. 2011 Jul;25(7):677-87 [PMID: 21732248]
  4. Prog Mol Biol Transl Sci. 2019;164:189-216 [PMID: 31383405]
  5. Nat Immunol. 2007 Jan;8(1):84-91 [PMID: 17115060]
  6. Cell Res. 2020 Aug;30(8):660-669 [PMID: 32467592]
  7. Anticancer Res. 2018 Oct;38(10):5569-5580 [PMID: 30275174]
  8. Nat Rev Cancer. 2016 Feb;16(2):121-6 [PMID: 26822578]
  9. Sci Rep. 2015 Nov 16;5:16749 [PMID: 26568382]
  10. J Biol Chem. 2019 Jun 7;294(23):9029-9036 [PMID: 31018963]
  11. J Comput Chem. 2004 Jul 15;25(9):1157-74 [PMID: 15116359]
  12. Comput Struct Biotechnol J. 2020 Nov 30;18:3936-3946 [PMID: 33335690]
  13. J Comput Chem. 2005 Dec;26(16):1668-88 [PMID: 16200636]
  14. Sci Rep. 2021 Feb 18;11(1):4049 [PMID: 33603068]
  15. J Exp Med. 2007 Mar 19;204(3):681-91 [PMID: 17353368]
  16. J Biol Chem. 2001 Nov 30;276(48):45207-16 [PMID: 11487585]
  17. Drug Discov Today Technol. 2004 Dec;1(4):337-41 [PMID: 24981612]
  18. Adv Exp Med Biol. 2017;995:97-125 [PMID: 28321814]
  19. J Sep Sci. 2015 Dec;38(24):4159-65 [PMID: 26456291]
  20. Structure. 2019 Jan 2;27(1):125-133.e4 [PMID: 30503777]
  21. Front Pharmacol. 2018 Mar 01;9:173 [PMID: 29545752]
  22. ACS Med Chem Lett. 2021 Mar 19;12(4):653-661 [PMID: 33859804]
  23. J Biomol Screen. 2009 Jan;14(1):31-42 [PMID: 19073965]
  24. PLoS One. 2019 Mar 26;14(3):e0212670 [PMID: 30913212]
  25. J Chem Theory Comput. 2015 Aug 11;11(8):3696-713 [PMID: 26574453]
  26. Mol Pharm. 2010 Jun 7;7(3):894-904 [PMID: 20420444]
  27. Immunohorizons. 2020 Jul 6;4(7):382-391 [PMID: 32631900]
  28. J Hepatol. 2019 May;70(5):999-1007 [PMID: 30738077]
  29. BMC Med. 2016 May 05;14:73 [PMID: 27151159]
  30. J Cell Biol. 2011 Nov 28;195(5):839-53 [PMID: 22105350]
  31. Life Sci. 2020 Oct 1;258:118228 [PMID: 32781071]
  32. Elife. 2020 Sep 08;9: [PMID: 32896273]
  33. J Med Chem. 2014 May 8;57(9):3737-45 [PMID: 24712915]
  34. Front Pharmacol. 2020 Nov 11;11:579768 [PMID: 33262701]
  35. ACS Med Chem Lett. 2019 Mar 20;10(5):786-791 [PMID: 31098000]
  36. Cancer Cell. 2020 Oct 12;38(4):551-566.e11 [PMID: 32860752]
  37. Res Rep Health Eff Inst. 2014 Jun;(181):3-63 [PMID: 25145040]
  38. Cell Rep. 2018 Oct 2;25(1):80-94 [PMID: 30282040]
  39. J Immunother Cancer. 2021 Jan;9(1): [PMID: 33408094]
  40. Esophagus. 2018 Jan;15(1):1-9 [PMID: 29892809]
  41. J Chem Inf Model. 2011 Jan 24;51(1):69-82 [PMID: 21117705]
  42. J Comput Aided Mol Des. 2007 Dec;21(12):681-91 [PMID: 17899391]
  43. J Mol Graph Model. 2021 Nov;108:108010 [PMID: 34425419]
  44. J Biol Chem. 2007 Nov 30;282(48):34693-9 [PMID: 17895239]
  45. ACS Med Chem Lett. 2021 Feb 19;12(3):443-450 [PMID: 33732413]
  46. Science. 2018 Mar 23;359(6382):1350-1355 [PMID: 29567705]
  47. J Phys Chem B. 2013 Jul 18;117(28):8408-21 [PMID: 23789789]
  48. Endocr Relat Cancer. 2017 Dec;24(12):T297-T310 [PMID: 28814451]
  49. J Immunol. 2009 May 15;182(10):6187-94 [PMID: 19414772]
  50. ACS Med Chem Lett. 2021 Mar 01;12(3):459-466 [PMID: 33738073]
  51. Immunol Res. 2012 Dec;54(1-3):262-5 [PMID: 22477524]

Word Cloud

Created with Highcharts 10.0.0HPK1kinaseimmunotherapycompoundsnovelworkvirtualscreeninginhibitionassayperformedinhibitorsfiveICcompoundM074-2865dynamicsidentifiedmolecularHematopoieticprogenitornegativeregulatorT-cellreceptorB-cellsignalingrecognizedantitumortargetGlidedocking-basedidentifyresultsdemonstratedvalues20 ��Mpotentonevalue293��009 ��MMolecularMDsimulationsdelveinteractionsunitinibdomainconsideredpromisinghitdevelopmentDiscoveryNovelInhibitorsStructure-BasedVirtualScreeninginhibitordockingsimulation

Similar Articles

Cited By (5)