In-Depth Molecular Profiling Specifies Human Retinal Microglia Identity.

Julian Wolf, Stefaniya Boneva, Dennis-Dominik Rosmus, Hansjürgen Agostini, Günther Schlunck, Peter Wieghofer, Anja Schlecht, Clemens Lange
Author Information
  1. Julian Wolf: Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  2. Stefaniya Boneva: Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  3. Dennis-Dominik Rosmus: Institute of Anatomy, Leipzig University, Leipzig, Germany.
  4. Hansjürgen Agostini: Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  5. Günther Schlunck: Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  6. Peter Wieghofer: Institute of Anatomy, Leipzig University, Leipzig, Germany.
  7. Anja Schlecht: Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  8. Clemens Lange: Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Abstract

Microglia are the tissue-resident macrophages of the retina and brain, being critically involved in organ development, tissue homeostasis, and response to cellular damage. Until now, little is known about the molecular signature of human retinal microglia and how it differs from the one of brain microglia and peripheral monocytes. In addition, it is not yet clear to what extent murine retinal microglia resemble those of humans, which represents an important prerequisite for translational research. The present study applies fluorescence-activated cell sorting to isolate human retinal microglia from enucleated eyes and compares their transcriptional profile with the one of whole retinal tissue, human brain microglia as well as classical, intermediate and non-classical monocytes. Finally, human retinal microglia are compared to murine retinal microglia, isolated from mice. Whereas human retinal microglia exhibited a high grade of similarity in comparison to their counterparts in the brain, several enriched genes were identified in retinal microglia when compared to whole retinal tissue, as well as classical, intermediate, and non-classical monocytes. In relation to whole retina sequencing, several risk genes associated with age-related macular degeneration (AMD) and diabetic retinopathy (DR) were preferentially expressed in retinal microglia, indicating their potential pathophysiological involvement. Although a high degree of similarity was observed between human and murine retinal microglia, several species-specific genes were identified, which should be kept in mind when employing mouse models to investigate retinal microglia biology. In summary, this study provides detailed insights into the molecular profile of human retinal microglia, identifies a plethora of tissue-specific and species-specific genes in comparison to human brain microglia and murine retinal microglia, and thus highlights the significance of retinal microglia in human retinal diseases and for translational research approaches.

Keywords

References

  1. EMBO J. 2021 Mar 15;40(6):e105123 [PMID: 33555074]
  2. Front Immunol. 2020 Feb 11;11:154 [PMID: 32117292]
  3. Glia. 2020 Sep;68(9):1859-1873 [PMID: 32150307]
  4. Immunity. 2020 Aug 18;53(2):429-441.e8 [PMID: 32814029]
  5. Exp Eye Res. 2019 Jul;184:234-242 [PMID: 31075224]
  6. Science. 2010 Nov 5;330(6005):841-5 [PMID: 20966214]
  7. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  8. Int J Mol Sci. 2021 Jun 25;22(13): [PMID: 34202223]
  9. Cell. 2019 Dec 12;179(7):1609-1622.e16 [PMID: 31835035]
  10. Am J Pathol. 2020 Aug;190(8):1632-1642 [PMID: 32339498]
  11. Front Cell Dev Biol. 2021 Jan 28;8:618598 [PMID: 33585455]
  12. Sci Rep. 2020 Oct 12;10(1):17022 [PMID: 33046735]
  13. Nat Commun. 2019 Oct 25;10(1):4902 [PMID: 31653841]
  14. Invest Ophthalmol Vis Sci. 2003 Jun;44(6):2730-5 [PMID: 12766080]
  15. Prog Retin Eye Res. 2015 Mar;45:30-57 [PMID: 25476242]
  16. Front Immunol. 2018 Mar 26;9:608 [PMID: 29632539]
  17. Sci Rep. 2017 Aug 16;7(1):8433 [PMID: 28814744]
  18. Front Immunol. 2020 Jan 09;10:3033 [PMID: 31993055]
  19. Trends Pharmacol Sci. 2022 Jan 3;: [PMID: 35031144]
  20. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  21. Front Immunol. 2019 Aug 30;10:2035 [PMID: 31543877]
  22. Lab Invest. 2020 Oct;100(10):1345-1355 [PMID: 32467590]
  23. J Neuroinflammation. 2021 Sep 20;18(1):215 [PMID: 34544421]
  24. Nat Immunol. 2016 Jul;17(7):797-805 [PMID: 27135602]
  25. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  26. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  27. Front Immunol. 2019 Jul 16;10:1618 [PMID: 31379825]
  28. Immunology. 2022 Mar;165(3):312-327 [PMID: 34826154]
  29. Nucleic Acids Res. 2020 Jul 2;48(W1):W395-W402 [PMID: 32479607]
  30. Cytotherapy. 2015 Nov;17(11):1604-16 [PMID: 26342993]
  31. Immunity. 2019 Mar 19;50(3):723-737.e7 [PMID: 30850344]
  32. Int J Mol Sci. 2021 Dec 10;22(24): [PMID: 34948115]
  33. Front Immunol. 2020 Nov 06;11:564077 [PMID: 33240260]
  34. BMC Biol. 2010 Jun 18;8:86 [PMID: 20565848]
  35. Nucleic Acids Res. 2021 Jan 8;49(D1):D884-D891 [PMID: 33137190]
  36. EMBO Mol Med. 2019 Jun;11(6): [PMID: 31015277]
  37. Front Cell Neurosci. 2020 Aug 06;14:198 [PMID: 32848611]
  38. Science. 2017 Jun 23;356(6344): [PMID: 28546318]
  39. Eye (Lond). 2018 Nov;32(11):1772-1782 [PMID: 30065361]
  40. J Alzheimers Dis. 2011;25(2):179-85 [PMID: 21358042]
  41. Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24100-24107 [PMID: 31712411]
  42. Nucleic Acids Res. 2019 Jan 8;47(D1):D1005-D1012 [PMID: 30445434]
  43. J Neurosci. 2012 Jan 4;32(1):264-74 [PMID: 22219288]
  44. Cells. 2020 Feb 18;9(2): [PMID: 32085567]
  45. Blood Adv. 2017 Dec 04;1(26):2510-2519 [PMID: 29296902]
  46. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  47. Nat Immunol. 2017 Sep;18(9):973-984 [PMID: 28671690]
  48. EMBO Mol Med. 2018 Oct;10(10): [PMID: 30224384]
  49. Nat Neurosci. 2013 Mar;16(3):273-80 [PMID: 23334579]
  50. Cell Rep. 2020 Feb 4;30(5):1271-1281 [PMID: 32023447]
  51. J Immunol. 1985 Mar;134(3):1487-92 [PMID: 3881524]
  52. Nat Neurosci. 2017 Aug;20(8):1162-1171 [PMID: 28671693]
  53. Front Immunol. 2020 Sep 11;11:567274 [PMID: 33042148]
  54. Cell. 2019 Oct 3;179(2):292-311 [PMID: 31585077]

MeSH Term

Animals
Disease Models, Animal
Humans
Macular Degeneration
Mice
Microglia
Monocytes
Retina

Word Cloud

Created with Highcharts 10.0.0microgliaretinalhumanbrainmonocytesmurinegenestissuewholeseveralMicrogliaretinamolecularonetranslationalresearchstudyprofilewellclassicalintermediatenon-classicalcomparedhighsimilaritycomparisonidentifiedsequencingage-relatedmaculardegenerationAMDdiabeticretinopathyDRspecies-specificmousetissue-residentmacrophagescriticallyinvolvedorgandevelopmenthomeostasisresponsecellulardamagenowlittleknownsignaturediffersperipheraladditionyetclearextentresemblehumansrepresentsimportantprerequisitepresentappliesfluorescence-activatedcellsortingisolateenucleatedeyescomparestranscriptionalFinallyisolatedmiceWhereasexhibitedgradecounterpartsenrichedrelationriskassociatedpreferentiallyexpressedindicatingpotentialpathophysiologicalinvolvementAlthoughdegreeobservedkeptmindemployingmodelsinvestigatebiologysummaryprovidesdetailedinsightsidentifiesplethoratissue-specificthushighlightssignificancediseasesapproachesIn-DepthMolecularProfilingSpecifiesHumanRetinalIdentityRNA

Similar Articles

Cited By