Characterizing temporal variability in streams supports nutrient indicator development using diatom and bacterial DNA metabarcoding.

Nathan J Smucker, Erik M Pilgrim, Huiyun Wu, Christopher T Nietch, John A Darling, Marirosa Molina, Brent R Johnson, Lester L Yuan
Author Information
  1. Nathan J Smucker: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA. Electronic address: smucker.nathan@epa.gov.
  2. Erik M Pilgrim: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
  3. Huiyun Wu: Oak Ridge Institute for Science and Education, P.O. Box 117, Oak Ridge, Tennessee 37831 USA c/o United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA.
  4. Christopher T Nietch: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
  5. John A Darling: United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA.
  6. Marirosa Molina: United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA.
  7. Brent R Johnson: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
  8. Lester L Yuan: United States Environmental Protection Agency, Office of Water, Washington, DC 20460, USA.

Abstract

Interest in developing periphytic diatom and bacterial indicators of nutrient effects continues to grow in support of the assessment and management of stream ecosystems and their watersheds. However, temporal variability could confound relationships between indicators and nutrients, subsequently affecting assessment outcomes. To document how temporal variability affects measures of diatom and bacterial assemblages obtained from DNA metabarcoding, we conducted weekly periphyton and nutrient sampling from July to October 2016 in 25 streams in a 1293 km mixed land use watershed. Measures of both diatom and bacterial assemblages were strongly associated with the percent agriculture in upstream watersheds and total phosphorus (TP) and total nitrogen (TN) concentrations. Temporal variability in TP and TN concentrations increased with greater amounts of agriculture in watersheds, but overall diatom and bacterial assemblage variability within sites-measured as mean distance among samples to corresponding site centroids in ordination space-remained consistent. This consistency was due in part to offsets between decreasing variability in relative abundances of taxa typical of low nutrient conditions and increasing variability in those typical of high nutrient conditions as mean concentrations of TP and TN increased within sites. Weekly low and high nutrient diatom and bacterial metrics were more strongly correlated with site mean nutrient concentrations over the sampling period than with same day measurements and more strongly correlated with TP than with TN. Correlations with TP concentrations were consistently strong throughout the study except briefly following two major precipitation events. Following these events, biotic relationships with TP reestablished within one to three weeks. Collectively, these results can strengthen interpretations of survey results and inform monitoring strategies and decision making. These findings have direct applications for improving the use of diatoms and bacteria, and the use of DNA metabarcoding, in monitoring programs and stream site assessments.

Keywords

References

  1. Water (Basel). 2022 Jul 30;14(15):1-24 [PMID: 36213613]
  2. J Environ Qual. 2014 Jul;43(4):1494-503 [PMID: 25603097]
  3. PLoS One. 2014 Jul 10;9(7):e102367 [PMID: 25010420]
  4. Environ Sci Technol. 2021 Jun 15;55(12):7890-7899 [PMID: 34060819]
  5. Sci Total Environ. 2020 Jul 20;727:138445 [PMID: 32334210]
  6. J Environ Qual. 2013 Mar-Apr;42(2):295-304 [PMID: 23673821]
  7. PLoS One. 2015 Oct 19;10(10):e0141063 [PMID: 26479491]
  8. Trends Microbiol. 2019 May;27(5):387-397 [PMID: 30554770]
  9. J Geophys Res Biogeosci. 2021 Mar;126(4):1-21 [PMID: 37089664]
  10. Environ Manage. 2007 Feb;39(2):194-212 [PMID: 17122998]
  11. Nat Microbiol. 2018 Sep;3(9):977-982 [PMID: 30143799]
  12. J Environ Qual. 2004 Nov-Dec;33(6):1954-72 [PMID: 15537918]
  13. Ecol Appl. 2020 Dec;30(8):e02205 [PMID: 32602216]
  14. J Environ Qual. 2012 Jan-Feb;41(1):7-20 [PMID: 22218169]
  15. Sci Total Environ. 2020 Apr 15;713:136630 [PMID: 31958730]
  16. Environ Manage. 2010 Apr;45(4):842-55 [PMID: 20108135]
  17. Science. 2012 Jun 15;336(6087):1438-40 [PMID: 22700929]
  18. Mol Ecol Resour. 2013 Jul;13(4):607-19 [PMID: 23590277]
  19. Sci Total Environ. 2008 Aug 1;400(1-3):379-95 [PMID: 18804845]
  20. PLoS One. 2018 Sep 24;13(9):e0204510 [PMID: 30248145]
  21. Environ Monit Assess. 2019 Mar 19;191(4):228 [PMID: 30888530]
  22. Science. 2001 Apr 6;292(5514):86-90 [PMID: 11292868]
  23. Freshw Sci. 2022 Mar;41(1):100-112 [PMID: 35646474]
  24. Environ Sci Technol. 2009 Jan 1;43(1):12-9 [PMID: 19209578]
  25. Environ Microbiol. 2019 Oct;21(10):3653-3668 [PMID: 31125479]
  26. Environ Sci Technol. 2016 Apr 5;50(7):3409-15 [PMID: 26914108]
  27. ISME J. 2012 Jan;6(1):94-103 [PMID: 21716311]
  28. FEMS Microbiol Rev. 2003 Apr;27(1):99-127 [PMID: 12697344]
  29. Mol Ecol Resour. 2017 Nov;17(6):1231-1242 [PMID: 28296259]
  30. Nucleic Acids Res. 2007;35(18):e120 [PMID: 17881377]
  31. Ecology. 2018 Jan;99(1):47-56 [PMID: 29105759]
  32. Protist. 2011 Jul;162(3):405-22 [PMID: 21239228]
  33. Ecol Appl. 2006 Aug;16(4):1267-76 [PMID: 16937796]
  34. Environ Sci Technol. 2008 Feb 1;42(3):822-30 [PMID: 18323108]
  35. Sci Total Environ. 2021 Dec 15;800:149350 [PMID: 34399326]
  36. Sci Total Environ. 2018 Oct 1;637-638:1295-1310 [PMID: 29801222]
  37. Environ Sci Process Impacts. 2014 Jul;16(7):1629-36 [PMID: 24647601]
  38. J Am Water Resour Assoc. 2019;55(6):1479-1491 [PMID: 32076366]
  39. J Phycol. 2014 Jun;50(3):437-61 [PMID: 26988318]
  40. Water Res. 2020 Oct 15;185:116139 [PMID: 32823192]
  41. FEMS Microbiol Ecol. 2008 Sep;65(3):463-73 [PMID: 18637965]
  42. J Phycol. 2011 Dec;47(6):1445-53 [PMID: 27020368]

Grants

  1. EPA999999/Intramural EPA

MeSH Term

DNA Barcoding, Taxonomic
DNA, Bacterial
Diatoms
Ecosystem
Environmental Monitoring
Nitrogen
Nutrients
Phosphorus
Rivers

Chemicals

DNA, Bacterial
Phosphorus
Nitrogen

Word Cloud

Created with Highcharts 10.0.0nutrientvariabilitydiatombacterialTPconcentrationsTNwatershedstemporalDNAmetabarcodingusestronglywithinmeansiteindicatorsassessmentstreamrelationshipsassemblagessamplingstreamsagriculturetotalincreasedtypicallowconditionshighcorrelatedeventsresultsmonitoringInterestdevelopingperiphyticeffectscontinuesgrowsupportmanagementecosystemsHoweverconfoundnutrientssubsequentlyaffectingoutcomesdocumentaffectsmeasuresobtainedconductedweeklyperiphytonJulyOctober2016251293kmmixedlandwatershedMeasuresassociatedpercentupstreamphosphorusnitrogenTemporalgreateramountsoverallassemblagesites-measureddistanceamongsamplescorrespondingcentroidsordinationspace-remainedconsistentconsistencyduepartoffsetsdecreasingrelativeabundancestaxaincreasingsitesWeeklymetricsperioddaymeasurementsCorrelationsconsistentlystrongthroughoutstudyexceptbrieflyfollowingtwomajorprecipitationFollowingbioticreestablishedonethreeweeksCollectivelycanstrengtheninterpretationssurveyinformstrategiesdecisionmakingfindingsdirectapplicationsimprovingdiatomsbacteriaprogramsassessmentsCharacterizingsupportsindicatordevelopmentusingAgricultureAlgaeBioassessmentMetricsNitrogenPhosphorus

Similar Articles

Cited By