Teleost swim bladder, an ancient air-filled organ that elicits mucosal immune responses.

Yongyao Yu, Zhenyu Huang, Weiguang Kong, Fen Dong, Xiaoting Zhang, Xue Zhai, Gaofeng Cheng, Mengting Zhan, Jiafeng Cao, Liguo Ding, Guangkun Han, Fumio Takizawa, Yang Ding, J Oriol Sunyer, Zhen Xu
Author Information
  1. Yongyao Yu: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China. ORCID
  2. Zhenyu Huang: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
  3. Weiguang Kong: State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.
  4. Fen Dong: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
  5. Xiaoting Zhang: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
  6. Xue Zhai: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
  7. Gaofeng Cheng: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
  8. Mengting Zhan: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
  9. Jiafeng Cao: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
  10. Liguo Ding: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
  11. Guangkun Han: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China.
  12. Fumio Takizawa: Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan.
  13. Yang Ding: Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
  14. J Oriol Sunyer: Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA. sunyer@vet.upenn.edu.
  15. Zhen Xu: Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China. zhenxu@ihb.ac.cn.

Abstract

The air-filled organs (AOs) of vertebrates (lungs and swim bladders) have evolved unique functions (air-breathing or buoyancy control in water) to adapt to different environments. Thus far, immune responses to microbes in AOs have been described exclusively in the lungs of tetrapods. Similar to lungs, swim bladders (SBs) represent a mucosal surface, a feature that leads us to hypothesize a role for SB in immunity. In this study, we demonstrate that secretory IgT (sIgT) is the key SB immunoglobulin (Ig) responding to the viral challenge, and the only Ig involved in viral neutralization in that organ. In support of these findings, we found that the viral load of the SB from fish devoid of sIgT was much higher than that of control fish. Interestingly, similar to the lungs in mammals, the SB represents the mucosal surface in fish with the lowest content of microbiota. Moreover, sIgT is the main Ig class found coating their surface, suggesting a key role of this Ig in the homeostasis of the SB microbiota. In addition to the well-established role of SB in buoyancy control, our findings reveal a previously unrecognized function of teleost SB in adaptive mucosal immune responses upon pathogenic challenge, as well as a previously unidentified role of sIgT in antiviral defense. Overall, our findings indicate that despite the phylogenetic distance and physiological roles of teleost SB and mammalian lungs, they both have evolved analogous mucosal immune responses against microbes which likely originated independently through a process of convergent evolution.

References

  1. Hurley, I. A. et al. A new time-scale for ray-finned fish evolution. Proc. Biol. Sci. 274, 489–498 (2007). [PMID: 17476768]
  2. Takeuchi, M., Okabe, M. & Aizawa, S. The genus Polypterus (bichirs): a fish group diverged at the stem of ray-finned fishes (Actinopterygii). Cold. Spring Harb. Protoc. 2009, pdb.emo117 (2009). [PMID: 20147149]
  3. Graham, J. B. et al. Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods. Nat. Commun. 5, 3022 (2014). [PMID: 24451680]
  4. Bi, X. et al. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 184, 1377–1391.e1314 (2021). [PMID: 33545088]
  5. Blaxter, J. H. & Tytler, P. Physiology and function of the swimbladder. Adv. Comp. Physiol. Biochem. 7, 311–367 (1978). [PMID: 367109]
  6. Alexander, R. M. Physical aspects of swimbladder function. Biol. Rev. Camb. Philos. Soc. 41, 141–176 (1966). [PMID: 5323464]
  7. Wang, K. et al. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184, 1362–1376.e1318 (2021). [PMID: 33545087]
  8. Bi, X. P. & Zhang, G. J. Ancestral developmental potentials in early bony fish contributed to vertebrate water-to-land transition. Zool. Res. 42, 135–137 (2021). [PMID: 33709637]
  9. Zheng, W. et al. Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung. PLoS ONE 6, e24019 (2011). [PMID: 21887364]
  10. Cass, A. N., Servetnick, M. D. & McCune, A. R. Expression of a lung developmental cassette in the adult and developing zebrafish swimbladder. Evol. Dev. 15, 119–132 (2013). [PMID: 25098637]
  11. Herold, S., Becker, C., Ridge, K. M. & Budinger, G. R. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur. Respir. J. 45, 1463–1478 (2015). [PMID: 25792631]
  12. Schaefer, I. M. et al. In situ detection of SARS-CoV-2 in lungs and airways of patients with COVID-19. Mod. Pathol. 33, 2104–2114 (2020). [PMID: 32561849]
  13. Yamamoto, K. et al. Type I alveolar epithelial cells mount innate immune responses during pneumococcal pneumonia. J. Immunol. 189, 2450–2459 (2012). [PMID: 22844121]
  14. Randall, T. D. Bronchus-associated lymphoid tissue (BALT) structure and function. Adv. Immunol. 107, 187–241 (2010). [PMID: 21034975]
  15. Chiu, C. & Openshaw, P. J. Antiviral B cell and T cell immunity in the lungs. Nat. Immunol. 16, 18–26 (2015). [PMID: 25521681]
  16. Salvi, S. & Holgate, S. T. Could the airway epithelium play an important role in mucosal immunoglobulin A production? Clin. Exp. Allergy 29, 1597–1605 (1999). [PMID: 10594535]
  17. Chiu, C., Ellebedy, A. H., Wrammert, J. & Ahmed, R. B cell responses to influenza infection and vaccination. Curr. Top. Microbiol. Immunol. 386, 381–398 (2015). [PMID: 25193634]
  18. Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 19, 383–397 (2019). [PMID: 30837674]
  19. Sterlin, D. et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci. Transl. Med. 13, eabd2223 (2021). [PMID: 33288662]
  20. Sunyer, J. O. Evolutionary and functional relationships of B cells from fish and mammals: insights into their novel roles in phagocytosis and presentation of particulate antigen. Infect. Disord. Drug. Targets 12, 200–212 (2012). [PMID: 22394174]
  21. Salinas, I., Zhang, Y. A. & Sunyer, J. O. Mucosal immunoglobulins and B cells of teleost fish. Dev. Comp. Immunol. 35, 1346–1365 (2011). [PMID: 22133710]
  22. Yu, Y., Wang, Q., Huang, Z., Ding, L. & Xu, Z. Immunoglobulins, mucosal immunity and vaccination in teleost fish. Front. Immunol. 11, 567941 (2020). [PMID: 33123139]
  23. Zhang, Y. A. et al. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 11, 827–835 (2010). [PMID: 20676094]
  24. Xu, Z. et al. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc. Natl. Acad. Sci. USA 110, 13097–13102 (2013). [PMID: 23884653]
  25. Zhang, X. T. et al. Prevailing role of mucosal Igs and B cells in teleost skin immune responses to bacterial infection. J. Immunol. 206, 1088–1101 (2021). [PMID: 33495235]
  26. Xu, Z. et al. Mucosal immunoglobulins at respiratory surfaces mark an ancient association that predates the emergence of tetrapods. Nat. Commun. 7, 10728 (2016). [PMID: 26869478]
  27. Xu, Z. et al. Specialization of mucosal immunoglobulins in pathogen control and microbiota homeostasis occurred early in vertebrate evolution. Sci. Immunol. 5, eaay3254 (2020). [PMID: 32034088]
  28. Laghi, V. et al. Exploring zebrafish larvae as a COVID-19 model: probable abortive SARS-CoV-2 replication in the swim bladder. Front. Cell. Infect. Microbiol. 172, https://doi.org/10.3389/fcimb.2022.790851 (2022).
  29. Voelz, K., Gratacap, R. L. & Wheeler, R. T. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides. Dis. Model. Mech. 8, 1375–1388 (2015). [PMID: 26398938]
  30. Bergeron, A. C. et al. Candida albicans and Pseudomonas aeruginosa interact to enhance virulence of mucosal infection in transparent zebrafish. Infect. Immun. 85, e00475–17 (2017). [PMID: 28847848]
  31. Finney, J. L., Robertson, G. N., McGee, C. A., Smith, F. M. & Croll, R. P. Structure and autonomic innervation of the swim bladder in the zebrafish (Danio rerio). J. Comp. Neurol. 495, 587–606 (2006). [PMID: 16498679]
  32. Wang, J., Li, Q., Xie, J. & Xu, Y. Cigarette smoke inhibits BAFF expression and mucosal immunoglobulin A responses in the lung during influenza virus infection. Respir. Res. 16, 37 (2015). [PMID: 25849069]
  33. Mestecky, J., Russell, M. W. & Elson, C. O. Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut 44, 2–5 (1999). [PMID: 9862815]
  34. Iwasaki, A. Mucosal dendritic cells. Annu. Rev. Immunol. 25, 381–418 (2007). [PMID: 17378762]
  35. Sun, K., Johansen, F. E., Eckmann, L. & Metzger, D. W. An important role for polymeric Ig receptor-mediated transport of IgA in protection against Streptococcus pneumoniae nasopharyngeal carriage. J. Immunol. 173, 4576–4581 (2004). [PMID: 15383591]
  36. Villasante, A., Ramirez, C., Catalán, N. & Romero, J. First report of swim bladder-associated microbiota in rainbow trout (Oncorhynchus mykiss). Microbes Environ. 32, 386–389 (2017). [PMID: 29033407]
  37. Tacchi, L. et al. Nasal immunity is an ancient arm of the mucosal immune system of vertebrates. Nat. Commun. 5, 5205 (2014). [PMID: 25335508]
  38. Johansson, T. et al. Genetic and serological typing of European infectious haematopoietic necrosis virus (IHNV) isolates. Dis. Aquat. Organ. 86, 213–221 (2009). [PMID: 20066956]
  39. Parra, D., Korytář, T., Takizawa, F. & Sunyer, J. O. B cells and their role in the teleost gut. Dev. Comp. Immunol. 64, 150–166 (2016). [PMID: 26995768]
  40. Bunker, J. J. & Bendelac, A. IgA responses to microbiota. Immunity 49, 211–224 (2018). [PMID: 30134201]
  41. Pilette, C., Ouadrhiri, Y., Godding, V., Vaerman, J. P. & Sibille, Y. Lung mucosal immunity: immunoglobulin-A revisited. Eur. Respir. J. 18, 571–588 (2001). [PMID: 11589357]
  42. Yu, Y. Y., Ding, L. G., Huang, Z. Y., Xu, H. Y. & Xu, Z. Commensal bacteria-immunity crosstalk shapes mucosal homeostasis in teleost fish. Rev. Aquac. 13, 2322–2343 (2021). [DOI: 10.1111/raq.12570]
  43. Dickson, R. P., Erb-Downward, J. R., Martinez, F. J. & Huffnagle, G. B. The microbiome and the respiratory tract. Annu. Rev. Physiol. 78, 481–504 (2016). [PMID: 26527186]
  44. Charlson, E. S. et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am. J. Respir. Crit. Care. Med. 184, 957–963 (2011). [PMID: 21680950]
  45. Gratacap, R. L., Bergeron, A. C. & Wheeler, R. T. Modeling mucosal candidiasis in larval zebrafish by swimbladder injection. J. Vis. Exp. 93, e52182 (2014).
  46. Gabor, K. A. et al. Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity to anti-influenza drug treatment. Dis. Model. Mech. 7, 1227–1237 (2014). [PMID: 25190709]
  47. Gratacap, R. L., Rawls, J. F. & Wheeler, R. T. Mucosal candidiasis elicits NF-κB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Dis. Model. Mech. 6, 1260–1270 (2013). [PMID: 23720235]
  48. Zhang, Y. et al. Manipulating the air-filled zebrafish swim bladder as a neutrophilic inflammation model for acute lung injury. Cell Death Dis. 7, e2470 (2016). [PMID: 27831560]
  49. Makris, S., Paulsen, M. & Johansson, C. Type I interferons as regulators of lung inflammation. Front. Immunol. 8, 259 (2017). [PMID: 28344581]
  50. Broquet, A. H., Hirata, Y., McAllister, C. S. & Kagnoff, M. F. RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. J. Immunol. 186, 1618–1626 (2011). [PMID: 21187438]
  51. Tengroth, L. et al. Functional effects of Toll-like receptor (TLR)3, 7, 9, RIG-I and MDA-5 stimulation in nasal epithelial cells. PLoS ONE 9, e98239 (2014). [PMID: 24886842]
  52. Tokunaga, R. et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - a target for novel cancer therapy. Cancer Treat. Rev. 63, 40–47 (2018). [PMID: 29207310]
  53. Williams, M. B. et al. The memory B cell subset responsible for the secretory IgA response and protective humoral immunity to rotavirus expresses the intestinal homing receptor, alpha4beta7. J. Immunol. 161, 4227–4235 (1998). [PMID: 9780197]
  54. Zuercher, A. W., Coffin, S. E., Thurnheer, M. C., Fundova, P. & Cebra, J. J. Nasal-associated lymphoid tissue is a mucosal inductive site for virus-specific humoral and cellular immune responses. J. Immunol. 168, 1796–1803 (2002). [PMID: 11823512]
  55. McNeal, M. M. & Ward, R. L. Long-term production of rotavirus antibody and protection against reinfection following a single infection of neonatal mice with murine rotavirus. Virology 211, 474–480 (1995). [PMID: 7645251]
  56. Liang, B., Hyland, L. & Hou, S. Nasal-associated lymphoid tissue is a site of long-term virus-specific antibody production following respiratory virus infection of mice. J. Virol. 75, 5416–5420 (2001). [PMID: 11333927]
  57. Takahashi, Y., Onodera, T., Kobayashi, K. & Kurosaki, T. Primary and secondary B-cell responses to pulmonary virus infection. Infect. Disord. Drug. Targets 12, 232–240 (2012). [PMID: 22394179]
  58. Ohshima, N. et al. Naturally occurring antibodies in humans can neutralize a variety of influenza virus strains, including H3, H1, H2, and H5. J. Virol. 85, 11048–11057 (2011). [PMID: 21865387]
  59. Boonstra, S. et al. Hemagglutinin-mediated membrane fusion: a biophysical perspective. Annu. Rev. Biophys. 47, 153–173 (2018). [PMID: 29494252]
  60. Zhang, Q., Liang, T., Nandakumar, K. S. & Liu, S. Emerging and state of the art hemagglutinin-targeted influenza virus inhibitors. Expert. Opin. Pharmacother. 22, 715–728 (2021). [PMID: 33327812]
  61. Suzuki, T. et al. Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus. Proc. Natl. Acad. Sci. USA 112, 7809–7814 (2015). [PMID: 26056267]
  62. Terauchi, Y. et al. IgA polymerization contributes to efficient virus neutralization on human upper respiratory mucosa after intranasal inactivated influenza vaccine administration. Hum. Vaccin. Immunother. 14, 1351–1361 (2018). [PMID: 29425074]
  63. Silvey, K. J., Hutchings, A. B., Vajdy, M., Petzke, M. M. & Neutra, M. R. Role of immunoglobulin A in protection against reovirus entry into Murine Peyer’s patches. J. Virol. 75, 10870–10879 (2001). [PMID: 11602727]
  64. Brandtzaeg, P. et al. The clinical condition of IgA-deficient patients is related to the proportion of IgD- and IgM-producing cells in their nasal mucosa. Clin. Exp. Immunol. 67, 626–636 (1987). [PMID: 3301101]
  65. Man, W. H., de Steenhuijsen Piters, W. A. & Bogaert, D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat. Rev. Microbiol. 15, 259–270 (2017). [PMID: 28316330]
  66. Aron-Wisnewsky, J., Doré, J. & Clement, K. The importance of the gut microbiota after bariatric surgery. Nat. Rev. Gastroenterol. Hepatol. 9, 590–598 (2012). [PMID: 22926153]

Grants

  1. R01 GM085207/NIGMS NIH HHS
  2. U1905204, 31873045, 32073001/National Natural Science Foundation of China (National Science Foundation of China)

Word Cloud

Created with Highcharts 10.0.0SBlungsmucosalimmuneresponsesrolesIgTIgswimcontrolsurfaceviralfindingsfishair-filledAOsbladdersevolvedbuoyancymicrobeskeychallengeorganfoundmicrobiotapreviouslyteleostorgansvertebratesuniquefunctionsair-breathingwateradaptdifferentenvironmentsThusfardescribedexclusivelytetrapodsSimilarSBsrepresentfeatureleadsushypothesizeimmunitystudydemonstratesecretoryIgTimmunoglobulinrespondinginvolvedneutralizationsupportloaddevoidmuchhigherInterestinglysimilarmammalsrepresentslowestcontentMoreovermainclasscoatingsuggestinghomeostasisadditionwell-establishedrevealunrecognizedfunctionadaptiveuponpathogenicwellunidentifiedantiviraldefenseOverallindicatedespitephylogeneticdistancephysiologicalrolesmammaliananalogouslikelyoriginatedindependentlyprocessconvergentevolutionTeleostbladderancientelicits

Similar Articles

Cited By