SARS-CoV-2 Mutations and COVID-19 Clinical Outcome: Mutation Global Frequency Dynamics and Structural Modulation Hold the Key.

Ranjeet Maurya, Pallavi Mishra, Aparna Swaminathan, Varsha Ravi, Sheeba Saifi, Akshay Kanakan, Priyanka Mehta, Priti Devi, Shaista Praveen, Sandeep Budhiraja, Bansidhar Tarai, Shimpa Sharma, Rajesh J Khyalappa, Meghnad G Joshi, Rajesh Pandey
Author Information
  1. Ranjeet Maurya: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  2. Pallavi Mishra: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  3. Aparna Swaminathan: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  4. Varsha Ravi: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  5. Sheeba Saifi: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  6. Akshay Kanakan: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  7. Priyanka Mehta: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  8. Priti Devi: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  9. Shaista Praveen: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.
  10. Sandeep Budhiraja: Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India.
  11. Bansidhar Tarai: Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India.
  12. Shimpa Sharma: Dr. D. Y. Patil Medical College, Pune, India.
  13. Rajesh J Khyalappa: Dr. D. Y. Patil Medical College, Pune, India.
  14. Meghnad G Joshi: Dr. D. Y. Patil Medical College, Pune, India.
  15. Rajesh Pandey: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had an enormous burden on the healthcare system worldwide as a consequence of its new emerging variants of concern (VOCs) since late 2019. Elucidating viral genome characteristics and its influence on disease severity and clinical outcome has been one of the crucial aspects toward pandemic management. Genomic surveillance holds the key to identify the spectrum of mutations disease outcome. Here, in our study, we performed a comprehensive analysis of the mutation distribution among the coronavirus disease 2019 (COVID-19) recovered and mortality patients. In addition to the clinical data analysis, the significant mutations within the two groups were analyzed for their global presence in an effort to understand the temporal dynamics of the mutations globally in comparison with our cohort. Interestingly, we found that all the mutations within the recovered patients showed significantly low global presence, indicating the possibility of regional pool of mutations and the absence of preferential selection by the virus during the course of the pandemic. In addition, we found the mutation S194L to have the most significant occurrence in the mortality group, suggesting its role toward a severe disease progression. Also, we discovered three mutations within the mortality patients with a high cohort and global distribution, which later became a part of variants of interest (VOIs)/VOCs, suggesting its significant role in enhancing viral characteristics. To understand the possible mechanism, we performed molecular dynamics (MD) simulations of nucleocapsid mutations, S194L and S194*, from the mortality and recovered patients, respectively, to examine its impacts on protein structure and stability. Importantly, we observed the mutation S194* within the recovered to be comparatively unstable, hence showing a low global frequency, as we observed. Thus, our study provides integrative insights about the clinical features, mutations significantly associated with the two different clinical outcomes, its global presence, and its possible effects at the structural level to understand the role of mutations in driving the COVID-19 pandemic.

Keywords

References

  1. Evol Med Public Health. 2021 Jun 27;9(1):267-275 [PMID: 34447577]
  2. Mayo Clin Proc. 2021 Jan;96(1):183-202 [PMID: 33413817]
  3. J Microbiol Immunol Infect. 2021 Apr;54(2):159-163 [PMID: 32265180]
  4. Microb Genom. 2021 Nov;7(11): [PMID: 34846283]
  5. Epidemiol Infect. 2020 Oct 26;148:e262 [PMID: 33100263]
  6. Genomics Proteomics Bioinformatics. 2020 Dec;18(6):749-759 [PMID: 33704069]
  7. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  8. J Biomol Struct Dyn. 2021 Apr;39(7):2659-2672 [PMID: 32362235]
  9. Front Genet. 2021 Mar 19;12:586569 [PMID: 33815459]
  10. Biochem Biophys Res Commun. 2020 Jun 30;527(3):618-623 [PMID: 32416961]
  11. JAMA Netw Open. 2021 Apr 1;4(4):e217746 [PMID: 33900399]
  12. J Hum Genet. 2020 Dec;65(12):1075-1082 [PMID: 32699345]
  13. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30679-30686 [PMID: 33184173]
  14. PLoS One. 2017 Oct 20;12(10):e0186666 [PMID: 29053759]
  15. Bioinformatics. 2020 Feb 1;36(3):928-929 [PMID: 31393560]
  16. Int J Biol Macromol. 2021 Feb 15;170:820-826 [PMID: 33359807]
  17. Pathogens. 2020 Jul 13;9(7): [PMID: 32668692]
  18. Mayo Clin Proc. 2021 Feb;96(2):446-463 [PMID: 33549263]
  19. Pathogens. 2021 Aug 31;10(9): [PMID: 34578142]
  20. Front Genet. 2021 Dec 17;12:753648 [PMID: 34976008]
  21. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  22. Front Microbiol. 2020 Jul 22;11:1800 [PMID: 32793182]
  23. Microb Pathog. 2021 May;154:104831 [PMID: 33727169]
  24. J Phys Chem B. 2018 Jul 5;122(26):6673-6689 [PMID: 29864281]
  25. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  26. Viruses. 2021 Nov 08;13(11): [PMID: 34835044]
  27. Front Microbiol. 2021 Feb 17;12:612432 [PMID: 33746914]
  28. Int J Antimicrob Agents. 2020 Mar;55(3):105924 [PMID: 32081636]
  29. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  30. Cell. 2020 Aug 20;182(4):812-827.e19 [PMID: 32697968]
  31. Nat Commun. 2020 Sep 11;11(1):4541 [PMID: 32917884]
  32. Bioinformatics. 2009 Jul 15;25(14):1841-2 [PMID: 19468054]
  33. J Mol Recognit. 2013 Jun;26(6):276-85 [PMID: 23595809]
  34. Emerg Microbes Infect. 2022 Dec;11(1):277-283 [PMID: 34951565]
  35. PLoS Negl Trop Dis. 2020 Nov 30;14(11):e0008744 [PMID: 33253226]
  36. Nat Med. 2021 Sep;27(9):1518-1524 [PMID: 34504335]
  37. Microbes Infect. 2020 Nov - Dec;22(10):598-607 [PMID: 33049387]
  38. ScientificWorldJournal. 2014 Feb 02;2014:536084 [PMID: 24672329]
  39. Emerg Microbes Infect. 2020 Dec;9(1):2685-2696 [PMID: 33205709]
  40. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  41. Cell Mol Immunol. 2022 Feb;19(2):293-295 [PMID: 35017716]
  42. Nat Methods. 2015 Aug;12(8):733-5 [PMID: 26076426]
  43. Nat Methods. 2019 Jun;16(6):453-454 [PMID: 31133757]
  44. Biophys J. 2004 Oct;87(4):2433-45 [PMID: 15454441]
  45. J Med Virol. 2021 Mar;93(3):1449-1458 [PMID: 32790106]
  46. Eur J Med Res. 2021 Jun 8;26(1):51 [PMID: 34103090]
  47. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  48. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  49. Food Chem Toxicol. 2018 Feb;112:495-506 [PMID: 28843597]
  50. Am J Respir Crit Care Med. 2020 Jun 1;201(11):1430-1434 [PMID: 32267160]
  51. Nat Commun. 2021 Mar 29;12(1):1936 [PMID: 33782395]
  52. J Transl Med. 2020 Apr 22;18(1):179 [PMID: 32321524]
  53. J Autoimmun. 2022 Jan;126:102779 [PMID: 34915422]
  54. Cell Mol Life Sci. 2016 Dec;73(23):4433-4448 [PMID: 27392606]
  55. Nature. 2020 Jul;583(7816):437-440 [PMID: 32434211]

MeSH Term

COVID-19
Genome, Viral
Humans
Mutation
Pandemics
Phylogeny
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0mutationsglobaldiseaseclinicalmutationCOVID-19recoveredmortalitypatientswithinSARS-CoV-2outcomepandemicanalysissignificantpresenceunderstanddynamicsrolecoronavirusvariants2019viralcharacteristicstowardstudyperformeddistributionadditiontwocohortfoundsignificantlylowS194LsuggestingpossiblemolecularS194*observedfrequencySevereacuterespiratorysyndrome2enormousburdenhealthcaresystemworldwideconsequencenewemergingconcernVOCssincelateElucidatinggenomeinfluenceseverityonecrucialaspectsmanagementGenomicsurveillanceholdskeyidentifyspectrumcomprehensiveamongdatagroupsanalyzedefforttemporalgloballycomparisonInterestinglyshowedindicatingpossibilityregionalpoolabsencepreferentialselectionviruscourseoccurrencegroupsevereprogressionAlsodiscoveredthreehighlaterbecamepartinterestVOIs/VOCsenhancingmechanismMDsimulationsnucleocapsidrespectivelyexamineimpactsproteinstructurestabilityImportantlycomparativelyunstablehenceshowingThusprovidesintegrativeinsightsfeaturesassociateddifferentoutcomeseffectsstructuralleveldrivingMutationsClinicalOutcome:MutationGlobalFrequencyDynamicsStructuralModulationHoldKeyflipsimulation

Similar Articles

Cited By