Body Mass Index, Interleukin-6 Signaling and Multiple Sclerosis: A Mendelian Randomization Study.

Marijne Vandebergh, Sara Becelaere, CHARGE Inflammation Working Group, Bénédicte Dubois, An Goris
Author Information
  1. Marijne Vandebergh: Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
  2. Sara Becelaere: Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
  3. Bénédicte Dubois: Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
  4. An Goris: Laboratory for Neuroimmunology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.

Abstract

Objectives: We explored whether genetically predicted increased body mass index (BMI) modulates multiple sclerosis (MS) risk through interleukin-6 (IL-6) signaling.
Methods: We performed a two-sample Mendelian randomization (MR) study using multiple genome-wide association studies (GWAS) datasets for BMI, IL-6 signaling, IL-6 levels and c-reactive protein (CRP) levels as exposures and estimated their effects on risk of MS from GWAS data from the International Multiple Sclerosis Genetics Consortium (IMSGC) in 14,802 MS cases and 26,703 controls.
Results: In univariable MR analyses, genetically predicted increased BMI and IL-6 signaling were associated with higher risk of MS (BMI: odds ratio (OR) = 1.30, 95% confidence interval (CI) = 1.15-1.47, = 3.76 × 10; IL-6 signaling: OR = 1.51, 95% CI = 1.11-2.04, = 0.01). Furthermore, higher BMI was associated with increased IL-6 signaling (β = 0.37, 95% CI = 0.32,0.41, = 1.58 × 10). In multivariable MR analyses, the effect of IL-6 signaling on MS risk remained after adjusting for BMI (OR = 1.36, 95% CI = 1.11-1.68, = 0.003) and higher BMI remained associated with an increased risk for MS after adjustment for IL-6 signaling (OR = 1.16, 95% CI =1.00-1.34, = 0.046). The proportion of the effect of BMI on MS mediated by IL-6 signaling corresponded to 43% (95% CI = 25%-54%). In contrast to IL-6 signaling, there was little evidence for an effect of serum IL-6 levels or CRP levels on risk of MS.
Conclusion: In this study, we identified IL-6 signaling as a major mediator of the association between BMI and risk of MS. Further explorations of pathways underlying the association between BMI and MS are required and will, together with our findings, improve the understanding of MS biology and potentially lead to improved opportunities for targeted prevention strategies.

Keywords

References

  1. Hum Mol Genet. 2018 Oct 15;27(20):3641-3649 [PMID: 30124842]
  2. Int J Epidemiol. 2015 Apr;44(2):484-95 [PMID: 25150977]
  3. Lancet. 2008 Oct 25;372(9648):1502-17 [PMID: 18970977]
  4. Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9041-6 [PMID: 18577591]
  5. J Immunol. 1998 Dec 15;161(12):6480-6 [PMID: 9862671]
  6. Curr Neurol Neurosci Rep. 2018 Mar 10;18(4):18 [PMID: 29525910]
  7. PLoS Med. 2016 Jun 28;13(6):e1002053 [PMID: 27351487]
  8. Int J Epidemiol. 2016 Dec 1;45(6):1961-1974 [PMID: 27616674]
  9. J Immunol. 2013 Feb 1;190(3):881-5 [PMID: 23267024]
  10. Nature. 2015 Feb 12;518(7538):197-206 [PMID: 25673413]
  11. Am J Hum Genet. 2014 Feb 6;94(2):198-208 [PMID: 24462370]
  12. Genet Epidemiol. 2013 Nov;37(7):658-65 [PMID: 24114802]
  13. Genet Epidemiol. 2016 May;40(4):304-14 [PMID: 27061298]
  14. Neurology. 2017 Apr 25;88(17):1623-1629 [PMID: 28356466]
  15. Neurology. 2011 Feb 8;76(6):540-8 [PMID: 21300969]
  16. Front Immunol. 2021 Apr 15;12:647588 [PMID: 33936066]
  17. J Neurol. 2021 Jan;268(1):114-124 [PMID: 32728946]
  18. Neurology. 2012 Nov 20;79(21):2140-5 [PMID: 23170011]
  19. Neurology. 2014 Mar 11;82(10):865-72 [PMID: 24500647]
  20. Hum Mol Genet. 2021 Apr 27;30(5):393-409 [PMID: 33517400]
  21. Neurol Sci. 2020 Oct;41(10):2875-2882 [PMID: 32328834]
  22. Br J Clin Pharmacol. 2021 Jul;87(7):3000-3013 [PMID: 33393675]
  23. Eur J Epidemiol. 2017 May;32(5):377-389 [PMID: 28527048]
  24. Obesity (Silver Spring). 2021 Feb;29(2):428-437 [PMID: 33491305]
  25. BMJ. 2019 May 22;365:l1855 [PMID: 31122926]
  26. Int J Epidemiol. 2017 Dec 1;46(6):1985-1998 [PMID: 29040600]
  27. Elife. 2018 May 30;7: [PMID: 29846171]
  28. Neurol Neuroimmunol Neuroinflamm. 2020 Jan 14;7(2): [PMID: 31937597]
  29. Br J Clin Pharmacol. 2022 Mar;88(3):1373-1378 [PMID: 34506050]
  30. Stat Med. 2021 Nov 20;40(26):5813-5830 [PMID: 34342032]
  31. Nat Rev Gastroenterol Hepatol. 2021 Nov;18(11):787-803 [PMID: 34211157]
  32. Neurol Genet. 2016 Sep 13;2(5):e97 [PMID: 27652346]
  33. Diabetes. 2015 May;64(5):1841-52 [PMID: 25712996]
  34. Annu Rev Public Health. 2016;37:17-32 [PMID: 26653405]
  35. Eur J Immunol. 1998 May;28(5):1727-37 [PMID: 9603480]
  36. PLoS Med. 2015 Aug 25;12(8):e1001866 [PMID: 26305103]
  37. Am J Hum Genet. 2018 Nov 1;103(5):691-706 [PMID: 30388399]
  38. Int J Epidemiol. 2015 Apr;44(2):512-25 [PMID: 26050253]
  39. Nat Genet. 2018 May;50(5):693-698 [PMID: 29686387]
  40. Stat Med. 2021 Nov 10;40(25):5434-5452 [PMID: 34338327]
  41. Int J Epidemiol. 2017 Dec 1;46(6):1734-1739 [PMID: 28398548]
  42. Immunology. 2014 Dec;143(4):560-8 [PMID: 24919524]
  43. Arch Med Sci. 2017 Jun;13(4):851-863 [PMID: 28721154]
  44. Neuroepidemiology. 2016;47(2):103-108 [PMID: 27723651]
  45. J Neurol. 2020 Oct;267(10):3083-3091 [PMID: 32529581]
  46. Science. 2019 Sep 27;365(6460): [PMID: 31604244]
  47. Mult Scler. 2016 Jun;22(7):878-83 [PMID: 26362895]
  48. JAMA. 2006 Dec 20;296(23):2832-8 [PMID: 17179460]
  49. Am J Epidemiol. 2017 Feb 1;185(3):162-171 [PMID: 28073764]
  50. Circ Genom Precis Med. 2020 Jun;13(3):e002872 [PMID: 32397738]
  51. Mult Scler. 2021 Dec;27(14):2150-2158 [PMID: 33749377]
  52. JAMA Cardiol. 2021 Mar 1;6(3):276-286 [PMID: 33263724]
  53. Nat Immunol. 2016 Apr;17(4):461-468 [PMID: 26878114]
  54. Mult Scler. 2021 Nov;27(13):1994-2000 [PMID: 33605807]
  55. Sci Rep. 2021 Jan 8;11(1):184 [PMID: 33420236]
  56. Am J Clin Nutr. 2016 Apr;103(4):965-78 [PMID: 26961927]

Grants

  1. MC_PC_17228/Medical Research Council
  2. MC_QA137853/Medical Research Council

MeSH Term

Body Mass Index
Genome-Wide Association Study
Humans
Interleukin-6
Mendelian Randomization Analysis
Multiple Sclerosis
Polymorphism, Single Nucleotide

Chemicals

IL6 protein, human
Interleukin-6

Word Cloud

Created with Highcharts 10.0.0=IL-6MSBMIsignaling1risk95%CI0increasedlevelsORmultipleMendelianMRassociationassociatedhighereffectgeneticallypredictedsclerosisinterleukin-6randomizationstudyGWASc-reactiveproteinCRPMultipleanalyses×10remainedObjectives:exploredwhetherbodymassindexmodulatesMethods:performedtwo-sampleusinggenome-widestudiesdatasetsexposuresestimatedeffectsdataInternationalSclerosisGeneticsConsortiumIMSGC14802cases26703controlsResults:univariableBMI:oddsratio30confidenceinterval15-147376signaling:5111-20401Furthermoreβ37324158multivariableadjusting3611-168003adjustment16=100-134046proportionmediatedcorresponded43%25%-54%contrastlittleevidenceserumConclusion:identifiedmajormediatorexplorationspathwaysunderlyingrequiredwilltogetherfindingsimproveunderstandingbiologypotentiallyleadimprovedopportunitiestargetedpreventionstrategiesBodyMassIndexInterleukin-6SignalingSclerosis:RandomizationStudygeneticepidemiologyobesitysusceptibility

Similar Articles

Cited By