Evolution of Responses to COVID-19 and Epidemiological Characteristics in South Korea.

Junhwi Jeon, Changyong Han, Tobhin Kim, Sunmi Lee
Author Information
  1. Junhwi Jeon: Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Korea.
  2. Changyong Han: Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Korea. ORCID
  3. Tobhin Kim: Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Korea.
  4. Sunmi Lee: Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Korea. ORCID

Abstract

The characteristics of COVID-19 have evolved at an accelerated rate over the last two years since the first SARS-CoV-2 case was discovered in December 2019. This evolution is due to the complex interplay among virus, humans, vaccines, and environments, which makes the elucidation of the clinical and epidemiological characteristics of COVID-19 essential to assess ongoing policy responses. In this study, we carry out an extensive retrospective analysis on infection clusters of COVID-19 in South Korea from January 2020 to September 2021 and uncover important clinical and social factors associated with age and regional patterns through the sophisticated large-scale epidemiological investigation using the data provided by the Korea Disease Control and Prevention Agency (KDCA). Epidemiological data of COVID-19 include daily confirmed cases, gender, age, city of residence, date of symptom onset, date of diagnosis, and route of infection. We divide the time span into six major periods based on the characteristics of COVID-19 according to various events such as the rise of new variants, vaccine rollout, change of social distancing levels, and other intervention measures. We explore key features of COVID-19 such as the relationship among unlinked, asymptomatic, and confirmed cases, serial intervals, infector-infectee interactions, and age/region-specific variations. Our results highlight the significant impact of temporal evolution of interventions implemented in South Korea on the characteristics of COVID-19 transmission, in particular, that of a high level of vaccination coverage in the senior-aged group on the dramatic reduction of confirmed cases.

Keywords

References

  1. JAMA. 2021 Jun 22;325(24):2457-2465 [PMID: 33956048]
  2. Nature. 2022 Feb;602(7898):664-670 [PMID: 35016195]
  3. Int J Infect Dis. 2021 Mar;104:742-745 [PMID: 33556610]
  4. Int J Infect Dis. 2021 May;106:363-369 [PMID: 33609772]
  5. Elife. 2021 Apr 08;10: [PMID: 33830018]
  6. J Med Internet Res. 2021 Apr 16;23(4):e26645 [PMID: 33750740]
  7. Sci Rep. 2021 Apr 21;11(1):8581 [PMID: 33883601]
  8. Nature. 2021 Nov;599(7883):114-119 [PMID: 34488225]
  9. Lancet Infect Dis. 2020 Oct;20(10):1151-1160 [PMID: 32559451]
  10. Am J Epidemiol. 2013 Nov 1;178(9):1505-12 [PMID: 24043437]
  11. Viruses. 2022 Mar 04;14(3): [PMID: 35336939]
  12. Nat Hum Behav. 2020 Sep;4(9):964-971 [PMID: 32759985]
  13. Viruses. 2022 Jan 02;14(1): [PMID: 35062282]
  14. Front Public Health. 2020 May 15;8:202 [PMID: 32574295]
  15. MMWR Morb Mortal Wkly Rep. 2020 Oct 30;69(43):1584-1590 [PMID: 33119562]
  16. Int J Infect Dis. 2021 Apr;105:236-238 [PMID: 33618004]
  17. Int J Environ Res Public Health. 2021 Dec 07;18(24): [PMID: 34948504]
  18. Virus Evol. 2020 May 14;6(1):veaa034 [PMID: 32817804]
  19. Nat Med. 2020 Nov;26(11):1714-1719 [PMID: 32943787]
  20. JMIR Public Health Surveill. 2021 Nov 16;7(11):e30968 [PMID: 34591778]
  21. IEEE Access. 2021 Mar 08;9:41456-41467 [PMID: 36281327]
  22. Am J Epidemiol. 2003 Dec 1;158(11):1039-47 [PMID: 14630599]
  23. Sci Rep. 2021 Dec 28;11(1):24470 [PMID: 34963690]
  24. Int J Environ Res Public Health. 2021 Apr 16;18(8): [PMID: 33923600]
  25. Int J Environ Res Public Health. 2021 Mar 30;18(7): [PMID: 33808290]
  26. Int J Infect Dis. 2020 Apr;93:284-286 [PMID: 32145466]
  27. PLoS Comput Biol. 2020 Dec 10;16(12):e1008409 [PMID: 33301457]
  28. Bioinformatics. 2018 Dec 1;34(23):4121-4123 [PMID: 29790939]
  29. Emerg Infect Dis. 2020 Jun;26(6):1341-1343 [PMID: 32191173]
  30. Clin Infect Dis. 2022 Jan 7;74(1):59-65 [PMID: 33704435]
  31. MMWR Morb Mortal Wkly Rep. 2020 Oct 02;69(39):1404-1409 [PMID: 33001872]
  32. Int J Infect Dis. 2021 Sep;110:213-221 [PMID: 34333119]
  33. Lancet Respir Med. 2022 Feb;10(2):e17 [PMID: 34929158]
  34. Int J Environ Res Public Health. 2021 Mar 13;18(6): [PMID: 33805624]
  35. BMC Infect Dis. 2021 May 26;21(1):485 [PMID: 34039296]
  36. Cell Rep Med. 2022 Mar 11;3(4):100583 [PMID: 35480627]
  37. J Med Virol. 2021 Oct;93(10):5977-5987 [PMID: 34224155]
  38. Environ Res. 2021 Apr;195:110856 [PMID: 33581086]
  39. BMJ. 2020 Jul 15;370:m2743 [PMID: 32669358]
  40. Int J Infect Dis. 2022 Jan;114:252-260 [PMID: 34800687]

MeSH Term

Aged
COVID-19
Humans
Policy
Republic of Korea
Retrospective Studies
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0COVID-19KoreacharacteristicsSouthcasesocialconfirmedcasesSARS-CoV-2evolutionamongclinicalepidemiologicalinfectionagedataEpidemiologicaldatedistancingunlinkedasymptomaticserialvaccinationevolvedacceleratedratelasttwoyearssincefirstdiscoveredDecember2019duecomplexinterplayvirushumansvaccinesenvironmentsmakeselucidationessentialassessongoingpolicyresponsesstudycarryextensiveretrospectiveanalysisclustersJanuary2020September2021uncoverimportantfactorsassociatedregionalpatternssophisticatedlarge-scaleinvestigationusingprovidedDiseaseControlPreventionAgencyKDCAincludedailygendercityresidencesymptomonsetdiagnosisroutedividetimespansixmajorperiodsbasedaccordingvariouseventsrisenewvariantsvaccinerolloutchangelevelsinterventionmeasuresexplorekeyfeaturesrelationshipintervalsinfector-infecteeinteractionsage/region-specificvariationsresultshighlightsignificantimpacttemporalinterventionsimplementedtransmissionparticularhighlevelcoveragesenior-agedgroupdramaticreductionEvolutionResponsesCharacteristicseffectivereproductionnumberinfection-treenetworkinterval

Similar Articles

Cited By (11)