Diagnostic utility of antigen detection rapid diagnostic tests for Covid-19: a systematic review and meta-analysis.

Somaye Ghasemi, Narges Nazari Harmooshi, Fakher Rahim
Author Information
  1. Somaye Ghasemi: Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
  2. Narges Nazari Harmooshi: Epidemiology Deputy of Health, Health Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
  3. Fakher Rahim: Thalassemia and Hemoglobinopathy Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Abstract

BACKGROUND: The early detection of coronavirus disease (Covid-19) infection to improve disease management becomes the greatest challenge. Despite the high sensitivity of RT-PCR, not only it was reported that 20-67% of infected patients had false-negative results. Rapid diagnostic tests (RDTs) are widely used as a point-of-care test for SARS-CoV-2 detection in pharyngeal and blood specimens. It's more appealing since it's less time-consuming, doesn't seem to be as expensive, and doesn't need any specific training, but the poor sensitivity is the major limitation. Several reports indicated the rapid test of blood and pharyngeal samples has the same sensitivity as the RT-PCR, but some reports have lower sensitivity, especially in asymptomatic patients.
METHODS: In the present survey, we investigate the eligible studies for the sensitivity and specificity of rapid tests and explore the factors that influence the result to help better diagnose Covid-19 infection. 20 studies met the inclusion criteria which imposed 33 different tests.
RESULTS: Our findings showed the type of sample, the type of assay, the time of sampling, and the load of virus influence on the sensitivity of RDTs.
CONCLUSION: This research extends our knowledge of how to improve the sensitivity of RDTs to better diagnose the infected patients to address the controlling Covid-19 pandemic.

References

  1. JAMA. 2020 Aug 25;324(8):782-793 [PMID: 32648899]
  2. J Med Virol. 2021 May;93(5):3152-3157 [PMID: 33615487]
  3. J Clin Med. 2021 Jan 17;10(2): [PMID: 33477365]
  4. Cochrane Database Syst Rev. 2006 Jan 25;(1):CD005593 [PMID: 16437532]
  5. J Clin Virol. 2020 Dec;133:104659 [PMID: 33160179]
  6. Lancet Microbe. 2021 Jan;2(1):e13-e22 [PMID: 33521734]
  7. J Med Virol. 2021 May;93(5):2988-2991 [PMID: 33527409]
  8. Diagnosis (Berl). 2021 Jan 18;8(3):322-326 [PMID: 33554511]
  9. J Clin Med. 2020 Oct 21;9(10): [PMID: 33096742]
  10. J Clin Virol. 2020 Jul;128:104413 [PMID: 32403010]
  11. J Virol Methods. 2021 Apr;290:114067 [PMID: 33476707]
  12. J Natl Cancer Inst. 1959 Apr;22(4):719-48 [PMID: 13655060]
  13. Control Clin Trials. 1986 Sep;7(3):177-88 [PMID: 3802833]
  14. Int J Environ Res Public Health. 2018 Jul 18;15(7): [PMID: 30021983]
  15. MMWR Morb Mortal Wkly Rep. 2021 Jan 22;70(3):100-105 [PMID: 33476316]
  16. J Infect. 2021 May;82(5):186-230 [PMID: 33309541]
  17. BMC Med. 2021 Mar 9;19(1):75 [PMID: 33685466]
  18. Reprod Biomed Online. 2020 Sep;41(3):483-499 [PMID: 32651106]
  19. J Clin Virol. 2020 Nov;132:104654 [PMID: 33053494]
  20. J Infect Dis. 2021 Apr 8;223(7):1139-1144 [PMID: 33394052]
  21. Pathogens. 2021 Jan 05;10(1): [PMID: 33466537]
  22. Int J Rheum Dis. 2012 Apr;15(2):129-35 [PMID: 22462415]
  23. J Clin Med. 2020 May 18;9(5): [PMID: 32443459]
  24. J Clin Virol. 2020 Aug;129:104500 [PMID: 32585619]
  25. PLoS One. 2020 Sep 17;15(9):e0237694 [PMID: 32941461]
  26. Int J Gen Med. 2021 Feb 12;14:435-440 [PMID: 33603450]
  27. Viruses. 2020 Dec 10;12(12): [PMID: 33322035]
  28. Clin Microbiol Infect. 2021 Mar;27(3):472.e7-472.e10 [PMID: 33189872]
  29. J Steroid Biochem Mol Biol. 2021 Feb;206:105794 [PMID: 33246156]
  30. Am J Infect Control. 2021 Jan;49(1):21-29 [PMID: 32659413]
  31. J Clin Virol. 2020 Aug;129:104455 [PMID: 32485618]
  32. Diagnostics (Basel). 2022 Jan 04;12(1): [PMID: 35054277]
  33. J Med Virol. 2020 Sep;92(9):1518-1524 [PMID: 32104917]
  34. J Clin Epidemiol. 2009 Oct;62(10):e1-34 [PMID: 19631507]
  35. JAMA. 2000 Apr 19;283(15):2008-12 [PMID: 10789670]
  36. Korean J Intern Med. 2021 Jan;36(1):11-14 [PMID: 32972123]
  37. Ann Clin Biochem. 2021 Mar;58(2):149-152 [PMID: 33242972]
  38. Int J Infect Dis. 2021 Mar;104:282-286 [PMID: 33130198]
  39. J Clin Microbiol. 2020 Aug 24;58(9): [PMID: 32636214]
  40. Ann Clin Biochem. 2021 May;58(3):174-180 [PMID: 33334135]
  41. Sci Adv. 2021 Jan 1;7(1): [PMID: 33219112]
  42. Euro Surveill. 2020 Aug;25(32): [PMID: 32794447]
  43. Lab Med. 2021 Mar 15;52(2):e46-e49 [PMID: 33283230]
  44. BMJ. 2003 Sep 6;327(7414):557-60 [PMID: 12958120]

MeSH Term

COVID-19
Diagnostic Tests, Routine
Humans
Pandemics
SARS-CoV-2
Sensitivity and Specificity

Word Cloud

Created with Highcharts 10.0.0sensitivitytestsdetectionCOVID-19patientsRDTsrapiddiseaseinfectionimproveRT-PCRinfecteddiagnostictestpharyngealbloodreportsstudiesinfluencebetterdiagnosetypeBACKGROUND:earlycoronavirusmanagementbecomesgreatestchallengeDespitehighreported20-67%false-negativeresultsRapidwidelyusedpoint-of-careSARS-CoV-2specimensappealingsincelesstime-consumingseemexpensiveneedspecifictrainingpoormajorlimitationSeveralindicatedsampleslowerespeciallyasymptomaticMETHODS:presentsurveyinvestigateeligiblespecificityexplorefactorsresulthelp20metinclusioncriteriaimposed33differentRESULTS:findingsshowedsampleassaytimesamplingloadvirusCONCLUSION:researchextendsknowledgeaddresscontrollingpandemicDiagnosticutilityantigenCovid-19:systematicreviewmeta-analysis

Similar Articles

Cited By