Polyphasic Identification and Genomic Insights of gen. sp. nov., a Novel Thermophilic Cyanobacteria Within Leptolyngbyaceae.

Jie Tang, Mahfuzur R Shah, Dan Yao, Ying Jiang, Lianming Du, Kelei Zhao, Liheng Li, Meijin Li, Michal M Waleron, Malgorzata Waleron, Krzysztof Waleron, Maurycy Daroch
Author Information
  1. Jie Tang: Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
  2. Mahfuzur R Shah: School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China.
  3. Dan Yao: Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
  4. Ying Jiang: School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China.
  5. Lianming Du: Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
  6. Kelei Zhao: Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China.
  7. Liheng Li: School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China.
  8. Meijin Li: School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China.
  9. Michal M Waleron: Department of Pharmaceutical Microbiology, Faculty of Pharmacy Medical University of Gdańsk, Gdańsk, Poland.
  10. Malgorzata Waleron: Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland.
  11. Krzysztof Waleron: Department of Pharmaceutical Microbiology, Faculty of Pharmacy Medical University of Gdańsk, Gdańsk, Poland.
  12. Maurycy Daroch: School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China.

Abstract

Thermal environments are an important reservoir of thermophiles with significant ecological and biotechnological potentials. However, thermophilic isolates remain largely unrecovered from their habitats and are rarely systematically identified. In this study, we characterized using polyphasic approaches a thermophilic strain, PKUAC-SCTAE412 (E412 hereafter), recovered from Lotus Lake hot spring based in Ganzi prefecture, China. The results of 16S rRNA/16S-23S ITS phylogenies, secondary structure, and morphology comparison strongly supported that strain E412 represent a novel genus within Leptolyngbyaceae. This delineation was further confirmed by genome-based analyses [phylogenomic inference, average nucleotide/amino-acid identity, and the percentages of conserved proteins (POCP)]. Based on the botanical code, the isolate is herein delineated as gen. sp. nov, a genus adjacent to recently delineated and . In addition, we successfully obtained the first complete genome of this new genus. Genomic analysis revealed its adaptations to the adverse hot spring environment and extensive molecular components related to mobile genetic elements, photosynthesis, and nitrogen metabolism. Moreover, the strain was capable of modifying the composition of its light-harvesting apparatus depending on the wavelength and photoperiod, showing chromatic adaptation capacity characteristic for T1 and T2 pigmentation types. Other physiological studies showed the strain's ability to utilize sodium bicarbonate and various sulfur compounds. The strain was also shown to be diazotrophic. Interestingly, 24.6% of annotated protein-coding genes in the E412 genome were identified as putatively acquired, hypothesizing that a large number of genes acquired through HGT might contribute to the genome expansion and habitat adaptation of those thermophilic strains. Most the HGT candidates (69.4%) were categorized as metabolic functions as suggested by the KEGG analysis. Overall, the complete genome of strain E412 provides the first insight into the genomic feature of the genus and lays the foundation for future global ecogenomic and geogenomic studies.

Keywords

References

  1. Front Microbiol. 2022 Jan 28;12:739625 [PMID: 35154020]
  2. ISME J. 2021 Jan;15(1):211-227 [PMID: 32943748]
  3. Nucleic Acids Res. 2016 Aug 19;44(14):6614-24 [PMID: 27342282]
  4. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W293-7 [PMID: 16845012]
  5. Front Microbiol. 2013 Dec 11;4:363 [PMID: 24376438]
  6. Microbiology (Reading). 2000 Jun;146 ( Pt 6):1275-1286 [PMID: 10846207]
  7. Front Microbiol. 2017 Nov 14;8:2132 [PMID: 29184540]
  8. Nat Plants. 2020 Feb;6(2):167-176 [PMID: 32042157]
  9. Nucleic Acids Res. 2018 Jul 2;46(W1):W282-W288 [PMID: 29905870]
  10. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  11. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  12. Genome Biol. 2011;12(3):R30 [PMID: 21443786]
  13. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  14. J Bacteriol. 2005 Sep;187(18):6258-64 [PMID: 16159757]
  15. Mol Phylogenet Evol. 2017 Jun;111:18-34 [PMID: 28279808]
  16. Nat Commun. 2018 Nov 30;9(1):5114 [PMID: 30504855]
  17. Life (Basel). 2021 Jun 30;11(7): [PMID: 34209262]
  18. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  19. Bioinformatics. 2013 Nov 1;29(21):2669-77 [PMID: 23990416]
  20. Int J Mol Sci. 2019 Jan 03;20(1): [PMID: 30609821]
  21. Life (Basel). 2015 Feb 09;5(1):432-46 [PMID: 25809962]
  22. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  23. Cell Mol Life Sci. 2014 Feb;71(3):449-65 [PMID: 23959171]
  24. Life (Basel). 2021 Nov 18;11(11): [PMID: 34833134]
  25. Science. 2008 Dec 19;322(5909):1843-5 [PMID: 19095942]
  26. Nucleic Acids Res. 2018 Jul 2;46(W1):W246-W251 [PMID: 29790974]
  27. Curr Protoc Bioinformatics. 2014 Jun 17;46:12.6.1-25 [PMID: 24939127]
  28. Microbiology (Reading). 2011 May;157(Pt 5):1269-1278 [PMID: 21292744]
  29. BMC Microbiol. 2018 Oct 17;18(1):134 [PMID: 30332987]
  30. Plant Cell Physiol. 2011 Oct;52(10):1776-85 [PMID: 21865302]
  31. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  32. Crit Rev Microbiol. 2018 Sep;44(5):541-560 [PMID: 29528259]
  33. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  34. Genome Biol. 2007;8(12):R259 [PMID: 18062815]
  35. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  36. Mol Microbiol. 2010 May;76(3):576-89 [PMID: 20345653]
  37. Front Mol Biosci. 2017 May 04;4:26 [PMID: 28523271]
  38. Mol Biol Evol. 2018 Feb 1;35(2):518-522 [PMID: 29077904]
  39. Front Microbiol. 2021 Sep 10;12:696102 [PMID: 34566907]
  40. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17468-73 [PMID: 17088557]
  41. J Bacteriol. 2014 Jun;196(12):2210-5 [PMID: 24706738]
  42. Environ Microbiol. 2015 Oct;17(10):3450-65 [PMID: 26234306]
  43. Environ Microbiol. 2007 Jan;9(1):26-38 [PMID: 17227409]
  44. Mol Biol Evol. 2017 Sep 1;34(9):2422-2424 [PMID: 28472384]
  45. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  46. Bioresour Technol. 2019 Apr;278:424-434 [PMID: 30685131]
  47. Front Microbiol. 2020 Jan 31;11:82 [PMID: 32082292]
  48. J Bacteriol. 1997 Aug;179(15):4671-5 [PMID: 9244251]
  49. Pathog Dis. 2016 Aug;74(6): [PMID: 27440809]
  50. Photosynth Res. 2005;83(2):135-50 [PMID: 16143848]
  51. Nat Rev Microbiol. 2005 Sep;3(9):711-21 [PMID: 16138099]
  52. Mol Phylogenet Evol. 2016 Dec;105:15-35 [PMID: 27546720]
  53. Front Genet. 2020 Nov 05;11:568223 [PMID: 33250920]
  54. Int J Syst Evol Microbiol. 2015 Jan;65(Pt 1):298-308 [PMID: 25351877]
  55. J Cell Biol. 1973 Aug;58(2):419-35 [PMID: 4199659]
  56. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  57. Bioinformatics. 2020 Apr 1;36(7):2251-2252 [PMID: 31742321]

Word Cloud

Created with Highcharts 10.0.0strainthermophilicE412genusgenomeLeptolyngbyaceaeidentifiedhotspring16SITSdelineatedgenspnovfirstcompleteGenomicanalysisadaptationstudiesgenesacquiredHGTThermalenvironmentsimportantreservoirthermophilessignificantecologicalbiotechnologicalpotentialsHoweverisolatesremainlargelyunrecoveredhabitatsrarelysystematicallystudycharacterizedusingpolyphasicapproachesPKUAC-SCTAE412hereafterrecoveredLotusLakebasedGanziprefectureChinaresultsrRNA/16S-23Sphylogeniessecondarystructuremorphologycomparisonstronglysupportedrepresentnovelwithindelineationconfirmedgenome-basedanalyses[phylogenomicinferenceaveragenucleotide/amino-acididentitypercentagesconservedproteinsPOCP]BasedbotanicalcodeisolatehereinadjacentrecentlyadditionsuccessfullyobtainednewrevealedadaptationsadverseenvironmentextensivemolecularcomponentsrelatedmobilegeneticelementsphotosynthesisnitrogenmetabolismMoreovercapablemodifyingcompositionlight-harvestingapparatusdependingwavelengthphotoperiodshowingchromaticcapacitycharacteristicT1T2pigmentationtypesphysiologicalshowedstrain'sabilityutilizesodiumbicarbonatevarioussulfurcompoundsalsoshowndiazotrophicInterestingly246%annotatedprotein-codingputativelyhypothesizinglargenumbermightcontributeexpansionhabitatstrainscandidates694%categorizedmetabolicfunctionssuggestedKEGGOverallprovidesinsightgenomicfeaturelaysfoundationfutureglobalecogenomicgeogenomicPolyphasicIdentificationInsightsNovelThermophilicCyanobacteriaWithinrRNA16S-23SKovacikiaStenomitosgenomicscyanobacterium

Similar Articles

Cited By