Elevated extinction risk of cacti under climate change.

Michiel Pillet, Barbara Goettsch, Cory Merow, Brian Maitner, Xiao Feng, Patrick R Roehrdanz, Brian J Enquist
Author Information
  1. Michiel Pillet: Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA. mdpillet@gmail.com. ORCID
  2. Barbara Goettsch: International Union for Conservation of Nature, Species Survival Commission, Cactus and Succulent Plants Specialist Group, Cambridge, UK.
  3. Cory Merow: Eversource Energy Center and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.
  4. Brian Maitner: Eversource Energy Center and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.
  5. Xiao Feng: Department of Geography, Florida State University, Tallahassee, FL, USA.
  6. Patrick R Roehrdanz: Moore Center for Science, Conservation International, Arlington, VA, USA. ORCID
  7. Brian J Enquist: Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA. ORCID

Abstract

Cactaceae (cacti), a New World plant family, is one of the most endangered groups of organisms on the planet. Conservation planning is uncertain as it is unclear whether climate and land-use change will positively or negatively impact global cactus diversity. On the one hand, a common perception is that future climates will be favourable to cacti as they have multiple adaptations and specialized physiologies and morphologies for increased heat and drought. On the other hand, the wide diversity of the more than 1,500 cactus species, many of which occur in more mesic and cooler ecosystems, questions the view that most cacti can tolerate warmer and drought conditions. Here we assess the hypothesis that cacti will benefit and expand in potential distribution in a warmer and more drought-prone world. We quantified exposure to climate change through range forecasts and associated diversity maps for 408 cactus species under three Representative Concentration Pathways (2.6, 4.5 and 8.5) for 2050 and 2070. Our analyses show that 60% of species will experience a reduction in favourable climate, with about a quarter of species exposed to environmental conditions outside of the current realized niche in over 25% of their current distribution. These results show low sensitivity to many uncertainties in forecasting, mostly deriving from dispersal ability and model complexity rather than climate scenarios. While current range size and the International Union for Conservation of Nature's Red List category were not statistically significant predictors of predicted future changes in suitable climate area, epiphytes had the greatest exposure to novel climates. Overall, the number of cactus species at risk is projected to increase sharply in the future, especially in current richness hotspots. Land-use change has previously been identified as the second-most-common driver of threat among cacti, affecting many of the ~31% of cacti that are currently threatened. Our results suggest that climate change will become a primary driver of cactus extinction risk with 60-90% of species assessed negatively impacted by climate change and/or other anthropogenic processes, depending on how these threat processes are distributed across cactus species.

References

  1. Boyle, T. H. & Anderson, E. in Cacti: Biology and Uses (ed. Nobel, P. S.) 125–141 (Univ. California Press, 2002).
  2. Gibson, A. C. & Nobel, P. S. The Cactus Primer (Harvard Univ. Press, 1986).
  3. Bravo Hollis, H. & Sánchez Mejorada, H. Las Cactáceas de México (Univ. Nacional Autónoma de México, 1978).
  4. Goettsch, B. et al. High proportion of cactus species threatened with extinction. Nat. Plants 1, 15142 (2015). [PMID: 27251394]
  5. Benavides, E., Breceda, A. & Anadón, J. D. Winners and losers in the predicted impact of climate change on cacti species in Baja California. Plant Ecol. 222, 29–44 (2021). [DOI: 10.1007/s11258-020-01085-2]
  6. Nobel, P. S. Responses of some North American CAM plants to freezing temperatures and doubled CO concentrations: implications of global climate change for extending cultivation. J. Arid. Environ. 34, 187–196 (1996). [DOI: 10.1006/jare.1996.0100]
  7. Reyes-García, C. & Andrade, J. L. Crassulacean acid metabolism under global climate change. N. Phytol. 181, 754–757 (2009). [DOI: 10.1111/j.1469-8137.2009.02762.x]
  8. Smith, S. D., Didden-Zopfy, B. & Nobel, P. S. High-temperature responses of North American cacti. Ecology 65, 643–651 (1984). [DOI: 10.2307/1941427]
  9. Larios, E., González, E. J., Rosen, P. C., Pate, A. & Holm, P. Population projections of an endangered cactus suggest little impact of climate change. Oecologia 192, 439–448 (2020). [PMID: 31938884]
  10. Esparza-Olguı́n, L., Valverde, T. & Vilchis-Anaya, E. Demographic analysis of a rare columnar cactus (Neobuxbaumia macrocephala) in the Tehuacan Valley, Mexico. Biol. Conserv. 103, 349–359 (2002). [DOI: 10.1016/S0006-3207(01)00146-X]
  11. Seal, C. E. et al. Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae. Glob. Change Biol. 23, 5309–5317 (2017). [DOI: 10.1111/gcb.13796]
  12. Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016). [DOI: 10.1038/nclimate2837]
  13. Gurvich, D. E. et al. Combined effect of water potential and temperature on seed germination and seedling development of cacti from a mesic Argentine ecosystem. Flora 227, 18–24 (2017). [DOI: 10.1016/j.flora.2016.12.003]
  14. Nuzhyna, N., Baglay, K., Golubenko, A. & Lushchak, O. Anatomically distinct representatives of Cactaceae Juss. family have different response to acute heat shock stress. Flora 242, 137–145 (2018). [DOI: 10.1016/j.flora.2018.03.014]
  15. Andrade, J. L. & Nobel, P. S. Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica 29, 261–270 (1997). [DOI: 10.1111/j.1744-7429.1997.tb00427.x]
  16. Williams, D. G., Hultine, K. R. & Dettman, D. L. Functional trade-offs in succulent stems predict responses to climate change in columnar cacti. J. Exp. Bot. 65, 3405–3413 (2014). [PMID: 24759883]
  17. Aragón-Gastélum, J. L. et al. Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora Morphol. Distrib. Funct. Ecol. Plants 209, 499–503 (2014). [DOI: 10.1016/j.flora.2014.06.002]
  18. Martorell, C., Montañana, D. M., Ureta, C. & Mandujano, M. C. Assessing the importance of multiple threats to an endangered globose cactus in Mexico: cattle grazing, looting and climate change. Biol. Conserv. 181, 73–81 (2015). [DOI: 10.1016/j.biocon.2014.10.035]
  19. Dávila, P., Téllez, O. & Lira, R. Impact of climate change on the distribution of populations of an endemic Mexican columnar cactus in the Tehuacán-Cuicatlán Valley, Mexico. Plant Biosyst. 147, 376–386 (2013). [DOI: 10.1080/11263504.2012.749955]
  20. Conver, J. L., Foley, T., Winkler, D. E. & Swann, D. E. Demographic changes over >70 yr in a population of saguaro cacti (Carnegiea gigantea) in the northern Sonoran Desert. J. Arid. Environ. 139, 41–48 (2017). [DOI: 10.1016/j.jaridenv.2016.12.008]
  21. Carrillo-Angeles, I. G., Suzán-Azpiri, H., Mandujano, M. C., Golubov, J. & Martínez-Ávalos, J. G. Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae). J. Arid. Environ. 124, 310–317 (2016). [DOI: 10.1016/j.jaridenv.2015.09.001]
  22. de Cavalcante, A. M. B. & de Duarte, A. S. Modeling the distribution of three cactus species of the Caatinga biome in future climate scenarios. Int. J. Ecol. Environ. Sci. 45, 191–203 (2019).
  23. de Cavalcante, A. M. B., de Duarte, A. S. & Ometto, J. P. H. B. Modeling the potential distribution of Epiphyllum phyllanthus (L.) Haw. under future climate scenarios in the Caatinga biome. An. Acad. Bras. Cienc. 92, 351–358 (2020). [DOI: 10.1590/0001-3765202020180836]
  24. Tellez-Valdes, O. & DiVila-Aranda, P. Protected areas and climate change: a case study of the cacti in the Tehuacan-Cuicatlan biosphere reserve, Mexico. Conserv. Biol. 17, 846–853 (2003). [DOI: 10.1046/j.1523-1739.2003.01622.x]
  25. dos Santos Simões, S., Zappi, D., da Costa, G. M., de Oliveira, G. & Aona, L. Y. S. Spatial niche modelling of five endemic cacti from the Brazilian Caatinga: past, present and future. Austral Ecol. 45, 1–13 (2019).
  26. Gorostiague, P., Sajama, J. & Ortega-Baes, P. Will climate change cause spatial mismatch between plants and their pollinators? A test using Andean cactus species. Biol. Conserv. 226, 247–255 (2018). [DOI: 10.1016/j.biocon.2018.07.003]
  27. Butler, C. J., Wheeler, E. A. & Stabler, L. B. Distribution of the threatened lace hedgehog cactus (Echinocereus reichenbachii) under various climate change scenarios. J. Torre. Bot. Soc. 139, 46–55 (2012). [DOI: 10.3159/TORREY-D-11-00049.1]
  28. Johnson, C. N. Species extinction and the relationship between distribution and abundance. Nature 394, 272–274 (1998). [DOI: 10.1038/28385]
  29. Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005). [DOI: 10.1111/j.1466-822X.2005.00162.x]
  30. Enquist, B. J. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.2615v2 (2016).
  31. Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010). [DOI: 10.1111/j.1365-2486.2009.02000.x]
  32. Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019). [PMID: 30926936]
  33. Goettsch, B., Durán, A. P. & Gaston, K. J. Global gap analysis of cactus species and priority sites for their conservation. Conserv. Biol. 33, 369–376 (2018). [PMID: 30039592]
  34. Maitner, B. S. et al. The bien R package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018). [DOI: 10.1111/2041-210X.12861]
  35. Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017). [PMID: 28872642]
  36. Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015). [DOI: 10.1175/JCLI-D-14-00362.1]
  37. Brodzik, M. J., Billingsley, B., Haran, T., Raup, B. & Savoie, M. H. EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets. ISPRS Int. J. Geo-Inf. 1, 32–45 (2012). [DOI: 10.3390/ijgi1010032]
  38. Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016). [PMID: 27552448]
  39. Phillips, S. maxnet: Fitting ‘maxent’ species distribution models with ‘glmnet’. R package version 0.1.4. https://CRAN.R-project.org/package=maxnet (2017).
  40. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010). [PMID: 20808728]
  41. Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013). [DOI: 10.1111/j.1600-0587.2012.07348.x]
  42. Franklin, S. B., Gibson, D. J., Robertson, P. A., Pohlmann, J. T. & Fralish, J. S. Parallel analysis: a method for determining significant principal components. J. Veg. Sci. 6, 99–106 (1995). [DOI: 10.2307/3236261]
  43. Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017). [DOI: 10.1111/ecog.02881]
  44. Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013). [DOI: 10.1111/j.1600-0587.2013.07872.x]
  45. Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006). [DOI: 10.1111/j.1365-2664.2006.01214.x]
  46. Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob. Ecol. Biogeogr. 23, 99–112 (2014). [DOI: 10.1111/geb.12102]
  47. R Core Team R: A Language and Environment for Statistical Computing Version 3.6.0 (R Foundation for Statistical Computing, 2019). https://www.R-project.org/

MeSH Term

Cactaceae
Climate Change
Conservation of Natural Resources
Droughts
Ecosystem

Word Cloud

Created with Highcharts 10.0.0climatecactispecieschangecactuswillcurrentdiversityfuturemanyriskoneConservationnegativelyhandclimatesfavourabledroughtwarmerconditionsdistributionexposurerange5showresultsdriverthreatextinctionprocessesCactaceaeNewWorldplantfamilyendangeredgroupsorganismsplanetplanninguncertainunclearwhetherland-usepositivelyimpactglobalcommonperceptionmultipleadaptationsspecializedphysiologiesmorphologiesincreasedheatwide1500occurmesiccoolerecosystemsquestionsviewcantolerateassesshypothesisbenefitexpandpotentialdrought-proneworldquantifiedforecastsassociatedmaps408threeRepresentativeConcentrationPathways264820502070analyses60%experiencereductionquarterexposedenvironmentaloutsiderealizedniche25%lowsensitivityuncertaintiesforecastingmostlyderivingdispersalabilitymodelcomplexityratherscenariossizeInternationalUnionNature'sRedListcategorystatisticallysignificantpredictorspredictedchangessuitableareaepiphytesgreatestnovelOverallnumberprojectedincreasesharplyespeciallyrichnesshotspotsLand-usepreviouslyidentifiedsecond-most-commonamongaffecting~31%currentlythreatenedsuggestbecomeprimary60-90%assessedimpactedand/oranthropogenicdependingdistributedacrossElevated

Similar Articles

Cited By