SOX7 loss-of-function variation as a cause of familial congenital heart disease.

Ri-Tai Huang, Yu-Han Guo, Chen-Xi Yang, Jia-Ning Gu, Xing-Biao Qiu, Hong-Yu Shi, Ying-Jia Xu, Song Xue, Yi-Qing Yang
Author Information
  1. Ri-Tai Huang: Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127, China.
  2. Yu-Han Guo: Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University Shanghai 200240, China.
  3. Chen-Xi Yang: Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University Shanghai 200240, China.
  4. Jia-Ning Gu: Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University Shanghai 200240, China.
  5. Xing-Biao Qiu: Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University Shanghai 200030, China.
  6. Hong-Yu Shi: Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University Shanghai 200940, China.
  7. Ying-Jia Xu: Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University Shanghai 200240, China.
  8. Song Xue: Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127, China.
  9. Yi-Qing Yang: Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University Shanghai 200240, China.

Abstract

INTRODUCTION: As the most frequent type of birth defect in humans, congenital heart disease (CHD) leads to a large amount of morbidity and mortality as well as a tremendous socioeconomic burden. Accumulating studies have convincingly substantiated the pivotal roles of genetic defects in the occurrence of familial CHD, and deleterious variations in a great number of genes have been reported to cause various types of CHD. However, owing to pronounced genetic heterogeneity, the hereditary components underpinning CHD remain obscure in most cases. This investigation aimed to identify novel genetic determinants underlying CHD.
METHODS AND RESULTS: A four-generation pedigree with high incidence of autosomal-dominant CHD was enrolled from the Chinese Han race population. Using whole-exome sequencing and Sanger sequencing assays of the family members available, a novel variation in heterozygous status, NM_031439.4: c.310C>T; p.(Gln104*), was discovered to be in co-segregation with the CHD phenotype in the whole family. The truncating variant was absent in 500 unrelated healthy subjects utilized as control individuals. Functional measurements by dual-luciferase reporter analysis revealed that Gln104*-mutant SOX7 failed to transactivate its two important target genes, and , which are both responsible for CHD. In addition, the nonsense variation invalidated the cooperative transactivation between SOX7 and NKX2.5, which is another recognized CHD-causative gene.
CONCLUSION: The present study demonstrates for the first time that genetically defective predisposes to CHD, which sheds light on the novel molecular mechanism underpinning CHD, and implies significance for precise prevention and personalized treatment in a subset of CHD patients.

Keywords

References

  1. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  2. Curr Opin Pulm Med. 2020 Sep;26(5):422-428 [PMID: 32657834]
  3. Am J Transl Res. 2021 May 15;13(5):4224-4232 [PMID: 34150010]
  4. Hum Mol Genet. 2012 Sep 15;21(18):4115-25 [PMID: 22723016]
  5. Am J Transl Res. 2020 Aug 15;12(8):4576-4581 [PMID: 32913531]
  6. Am Heart J. 2019 Sep;215:70-77 [PMID: 31299559]
  7. Hum Genet. 2021 Feb;140(2):333-348 [PMID: 32696347]
  8. Genet Mol Biol. 2020 Nov 13;43(4):e20200142 [PMID: 33306779]
  9. J Am Heart Assoc. 2020 Jun 2;9(11):e015843 [PMID: 32427039]
  10. Dev Dyn. 2005 Dec;234(4):878-91 [PMID: 16193513]
  11. Int J Cardiol. 2020 Nov 1;318:45-51 [PMID: 32634497]
  12. Genome Med. 2020 Aug 28;12(1):76 [PMID: 32859249]
  13. Genes (Basel). 2020 Aug 20;11(9): [PMID: 32825426]
  14. Hum Mol Genet. 2020 Jul 21;29(11):1900-1921 [PMID: 32196547]
  15. Cardiovasc Diagn Ther. 2021 Apr;11(2):563-576 [PMID: 33968634]
  16. Eur J Med Genet. 2021 May;64(5):104211 [PMID: 33794346]
  17. J Clin Med. 2020 May 13;9(5): [PMID: 32414075]
  18. Circ Res. 2020 Mar 27;126(7):811-821 [PMID: 32078439]
  19. Pediatr Res. 2019 Apr;85(5):644-649 [PMID: 30228371]
  20. Hum Mol Genet. 2020 Mar 13;29(4):566-579 [PMID: 31813956]
  21. Genes (Basel). 2021 Apr 21;12(5): [PMID: 33919081]
  22. Science. 1998 Jul 3;281(5373):108-11 [PMID: 9651244]
  23. J Am Heart Assoc. 2019 Aug 6;8(15):e011870 [PMID: 31315496]
  24. Hum Mol Genet. 2020 May 8;29(7):1068-1082 [PMID: 31625560]
  25. Card Electrophysiol Clin. 2017 Jun;9(2):213-223 [PMID: 28457236]
  26. PLoS One. 2020 Apr 21;15(4):e0230982 [PMID: 32315303]
  27. Int Heart J. 2021 May 29;62(3):566-574 [PMID: 33952808]
  28. BMC Cardiovasc Disord. 2021 May 5;21(1):229 [PMID: 33947343]
  29. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  30. Circ Genom Precis Med. 2020 Aug;13(4):e002836 [PMID: 32812804]
  31. Nature. 2003 Jul 24;424(6947):443-7 [PMID: 12845333]
  32. Gene. 2020 May 30;741:144555 [PMID: 32165302]
  33. Am J Hum Genet. 2020 Dec 3;107(6):1178-1185 [PMID: 33242396]
  34. J Pediatr (Rio J). 2020 May - Jun;96(3):279-288 [PMID: 31421069]
  35. Int J Cardiol. 2020 Apr 15;305:63-69 [PMID: 32057477]
  36. Pediatr Cardiol. 2021 Jan;42(1):1-18 [PMID: 33373013]
  37. Circ Genom Precis Med. 2020 Jun;13(3):e002843 [PMID: 32396742]
  38. Am J Transl Res. 2020 Apr 15;12(4):1319-1337 [PMID: 32355544]
  39. Mol Cell Biol. 2004 Dec;24(23):10492-503 [PMID: 15542856]
  40. Heart Rhythm. 2021 May;18(5):793-800 [PMID: 32961334]
  41. Circulation. 2018 Nov 20;138(21):e653-e711 [PMID: 30571578]
  42. Circ Genom Precis Med. 2021 Feb;14(1):e003108 [PMID: 33448881]
  43. Cell Death Dis. 2021 Apr 12;12(4):393 [PMID: 33846290]
  44. Mol Genet Genomic Med. 2020 Oct;8(10):e1437 [PMID: 32720365]
  45. Heart Rhythm. 2021 May;18(5):785-792 [PMID: 33465514]
  46. Circulation. 2021 Jun 8;143(23):2254-2272 [PMID: 33663226]
  47. Cardiovasc Diagn Ther. 2021 Apr;11(2):529-537 [PMID: 33968631]
  48. Nucleic Acids Res. 2010 Sep;38(16):e164 [PMID: 20601685]
  49. Heart Rhythm. 2021 May;18(5):684-693 [PMID: 33429106]
  50. Pediatr Cardiol. 2013 Oct;34(7):1535-55 [PMID: 23963188]
  51. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13933-8 [PMID: 19666519]
  52. Can J Cardiol. 2021 Feb;37(2):215-223 [PMID: 32739453]
  53. Heart. 2016 Nov 1;102(21):1703-1709 [PMID: 27250216]
  54. Clin Chest Med. 2021 Mar;42(1):9-18 [PMID: 33541620]
  55. Circulation. 2020 Mar 3;141(9):e139-e596 [PMID: 31992061]
  56. Genome Med. 2018 Jul 20;10(1):56 [PMID: 30029678]
  57. Cold Spring Harb Perspect Biol. 2020 Mar 2;12(3): [PMID: 31548181]
  58. Circulation. 2020 Sep 22;142(12):1132-1147 [PMID: 32795094]
  59. Pediatr Cardiol. 2020 Jun;41(5):869-876 [PMID: 32162026]
  60. Am J Hum Genet. 2017 Dec 7;101(6):985-994 [PMID: 29198724]
  61. Am J Med Genet A. 2009 Aug;149A(8):1661-77 [PMID: 19606479]
  62. Genome Med. 2020 Jan 15;12(1):9 [PMID: 31941532]
  63. Eur J Med Genet. 2021 Feb;64(2):104124 [PMID: 33359164]
  64. Heart Fail Rev. 2020 Jul;25(4):569-581 [PMID: 31873841]
  65. Eur J Med Genet. 2020 Apr;63(4):103827 [PMID: 31857253]
  66. Genes (Basel). 2021 May 28;12(6): [PMID: 34071175]
  67. PLoS One. 2013 Aug 29;8(8):e72515 [PMID: 24009689]
  68. Genome Med. 2020 Apr 29;12(1):42 [PMID: 32349777]
  69. Clin Cardiol. 2019 Jul;42(7):684-691 [PMID: 31073996]
  70. JACC Heart Fail. 2020 Feb;8(2):87-99 [PMID: 31838031]
  71. Am J Transl Res. 2021 May 15;13(5):4281-4295 [PMID: 34150014]
  72. Stroke. 2018 May;49(5):1155-1162 [PMID: 29626133]
  73. Am J Transl Res. 2020 Dec 15;12(12):8185-8191 [PMID: 33437391]
  74. Heart Rhythm. 2020 Nov;17(11):1953-1959 [PMID: 32512179]
  75. Am J Transl Res. 2021 Apr 15;13(4):2763-2773 [PMID: 34017439]
  76. Heart Rhythm. 2020 Jan;17(1):58-65 [PMID: 31349063]
  77. J Clin Lab Anal. 2020 Apr;34(4):e23147 [PMID: 31867804]
  78. Circ Res. 2017 Mar 17;120(6):923-940 [PMID: 28302740]
  79. Hum Mutat. 2020 Dec;41(12):2167-2178 [PMID: 33131162]
  80. J Transl Med. 2020 Jul 14;18(1):283 [PMID: 32664970]
  81. Cardiol Young. 2020 Nov;30(11):1559-1565 [PMID: 33109295]
  82. Heart. 2020 Mar;106(5):333-341 [PMID: 31806699]
  83. Eur J Hum Genet. 2020 Apr;28(4):525-528 [PMID: 31570783]
  84. J Am Heart Assoc. 2020 Apr 7;9(7):e013575 [PMID: 32200729]
  85. Circulation. 2021 Feb 23;143(8):e254-e743 [PMID: 33501848]
  86. Am J Cardiol. 2020 Aug 15;129:87-94 [PMID: 32593432]
  87. Am J Hum Genet. 2020 Nov 5;107(5):977-988 [PMID: 33058759]
  88. Int J Cardiol. 2020 May 1;306:61-66 [PMID: 32143921]
  89. Int Heart J. 2020 Jul 30;61(4):761-768 [PMID: 32641638]
  90. Am J Transl Res. 2020 Oct 15;12(10):6501-6508 [PMID: 33194047]

Word Cloud

Created with Highcharts 10.0.0CHDSOX7heartdiseasegeneticnovelvariationcongenitalfamilialgenescauseunderpinningsequencingfamilydual-luciferaseanalysisINTRODUCTION:frequenttypebirthdefecthumansleadslargeamountmorbiditymortalitywelltremendoussocioeconomicburdenAccumulatingstudiesconvincinglysubstantiatedpivotalrolesdefectsoccurrencedeleteriousvariationsgreatnumberreportedvarioustypesHoweverowingpronouncedheterogeneityhereditarycomponentsremainobscurecasesinvestigationaimedidentifydeterminantsunderlyingMETHODSANDRESULTS:four-generationpedigreehighincidenceautosomal-dominantenrolledChineseHanracepopulationUsingwhole-exomeSangerassaysmembersavailableheterozygousstatusNM_0314394:c310C>TpGln104*discoveredco-segregationphenotypewholetruncatingvariantabsent500unrelatedhealthysubjectsutilizedcontrolindividualsFunctionalmeasurementsreporterrevealedGln104*-mutantfailedtransactivatetwoimportanttargetresponsibleadditionnonsenseinvalidatedcooperativetransactivationNKX25anotherrecognizedCHD-causativegeneCONCLUSION:presentstudydemonstratesfirsttimegeneticallydefectivepredisposesshedslightmolecularmechanismimpliessignificanceprecisepreventionpersonalizedtreatmentsubsetpatientsloss-of-functionCongenitalmedicalgeneticstranscriptionalregulation

Similar Articles

Cited By