Nanocellulose: a bioadsorbent for chemical contaminant remediation.

Mohd Nor Faiz Norrrahim, Noor Azilah Mohd Kasim, Victor Feizal Knight, Muhammad Syukri Mohamad Misenan, Nurjahirah Janudin, Noor Aisyah Ahmad Shah, Norherdawati Kasim, Wan Yusmawati Wan Yusoff, Siti Aminah Mohd Noor, Siti Hasnawati Jamal, Keat Khim Ong, Wan Md Zin Wan Yunus
Author Information
  1. Mohd Nor Faiz Norrrahim: Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia. ORCID
  2. Noor Azilah Mohd Kasim: Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia. ORCID
  3. Victor Feizal Knight: Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia. ORCID
  4. Muhammad Syukri Mohamad Misenan: Department of Chemistry, College of Arts and Science, Yildiz Technical University, Davutpasa Campus 34220 Esenler Istanbul Turkey. ORCID
  5. Nurjahirah Janudin: Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia.
  6. Noor Aisyah Ahmad Shah: Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia azilah@upnm.edu.my.
  7. Norherdawati Kasim: Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia azilah@upnm.edu.my.
  8. Wan Yusmawati Wan Yusoff: Department of Physics, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia.
  9. Siti Aminah Mohd Noor: Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia azilah@upnm.edu.my.
  10. Siti Hasnawati Jamal: Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia azilah@upnm.edu.my.
  11. Keat Khim Ong: Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia.
  12. Wan Md Zin Wan Yunus: Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia.

Abstract

Chemical contaminants such as heavy metals, dyes, and organic oils seriously affect the environment and threaten human health. About 2 million tons of waste is released every day into the water system. Heavy metals are the largest contributor which cover about 31% of the total composition of water contaminants. Every day, approximately 14 000 people die due to environmental exposure to selected chemicals. Removal of these contaminants down to safe levels is expensive, high energy and unsustainable by current approaches such as oxidation, biodegradation, photocatalysis, precipitation, reverse osmosis and adsorption. A combination of biosorption and nanotechnology offers a new way to remediate these chemical contaminants. Nanostructured materials are proven to have higher adsorption capacities than the same material in its larger-scale form. Nanocellulose is very promising as a high-performance bioadsorbent due to its interesting characteristics of high adsorption capacity, high mechanical strength, hydrophilic surface chemistry, renewability and biodegradability. It has been proven to have higher adsorption capacity and better binding affinity than other similar materials at the macroscale. The high specific surface area and abundance of hydroxyl groups within lead to the possible functionalization of this material for decontamination purposes. Several research papers have shown the effectiveness of nanocellulose in the remediation of chemical contaminants. This review aims to provide an overview of the most recent developments regarding nanocellulose as an adsorbent for chemical contamination remediation. Recent advancements regarding the modification of nanocellulose to enhance its adsorption efficiency towards heavy metals, dyes and organic oils were highlighted. Moreover, the desorption capability and environmental issue related to every developed nanocellulose-based adsorbent were also tackled.

References

  1. ACS Appl Mater Interfaces. 2020 Jan 29;12(4):5040-5049 [PMID: 31820905]
  2. Int J Biol Macromol. 2015 Jan;72:1129-35 [PMID: 25453286]
  3. Ecotoxicol Environ Saf. 2018 Oct 30;162:354-364 [PMID: 30007185]
  4. Langmuir. 2016 Nov 15;32(45):11771-11779 [PMID: 27775358]
  5. Chem Soc Rev. 2019 Jan 21;48(2):463-487 [PMID: 30603760]
  6. Membranes (Basel). 2012 Nov 21;2(4):804-40 [PMID: 24958430]
  7. Int J Biol Macromol. 2020 May 15;151:322-332 [PMID: 32084468]
  8. Int J Biol Macromol. 2020 May 15;151:124-135 [PMID: 32068056]
  9. Water Res. 2002 May;36(9):2304-18 [PMID: 12108723]
  10. J Environ Sci (China). 2016 May;43:26-39 [PMID: 27155406]
  11. Environ Sci Pollut Res Int. 2019 Feb;26(4):3095-3099 [PMID: 30411295]
  12. Sci Total Environ. 2018 Sep 1;635:1331-1344 [PMID: 29710586]
  13. Curr Opin Biotechnol. 2016 Jun;39:76-88 [PMID: 26930621]
  14. Environ Sci Pollut Res Int. 2018 Aug;25(22):22060-22074 [PMID: 29802610]
  15. Carbohydr Polym. 2017 Oct 1;173:422-430 [PMID: 28732884]
  16. J Colloid Interface Sci. 2020 Feb 15;560:849-856 [PMID: 31708258]
  17. Materials (Basel). 2018 Sep 18;11(9): [PMID: 30231540]
  18. Biomacromolecules. 2008 Mar;9(3):1022-6 [PMID: 18247566]
  19. Indian J Clin Biochem. 2006 Sep;21(2):169-72 [PMID: 23105638]
  20. Chem Soc Rev. 2011 Jul;40(7):3941-94 [PMID: 21566801]
  21. Nanomaterials (Basel). 2017 Mar 05;7(3): [PMID: 28336891]
  22. Nanoscale. 2015 Sep 14;7(34):14413-21 [PMID: 26248574]
  23. Beilstein J Nanotechnol. 2018 Sep 19;9:2479-2498 [PMID: 30345212]
  24. J Colloid Interface Sci. 2009 Mar 1;331(1):32-9 [PMID: 19026426]
  25. Carbohydr Polym. 2018 Sep 15;196:376-384 [PMID: 29891309]
  26. Carbohydr Polym. 2020 Feb 1;229:115433 [PMID: 31826401]
  27. Polymers (Basel). 2020 Apr 17;12(4): [PMID: 32316664]
  28. Phys Chem Chem Phys. 2016 Oct 12;18(40):28297-28306 [PMID: 27711507]
  29. ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7619-7628 [PMID: 28166624]
  30. Carbohydr Polym. 2020 Oct 1;245:116511 [PMID: 32718622]
  31. Exp Oncol. 2004 Jun;26(2):98-105 [PMID: 15273660]
  32. Bioresour Technol. 2016 Oct;218:326-34 [PMID: 27372013]
  33. Nanoscale. 2012 Jun 7;4(11):3274-94 [PMID: 22565323]
  34. Mar Pollut Bull. 2003 Jun;46(6):780-3 [PMID: 12787586]
  35. Bioresour Technol. 2015 Dec;197:348-55 [PMID: 26344242]
  36. Carbohydr Polym. 2018 Jun 15;190:184-189 [PMID: 29628236]
  37. Langmuir. 2018 Nov 6;34(44):13305-13311 [PMID: 30347162]
  38. J Hazard Mater. 2018 Feb 15;344:258-273 [PMID: 29055199]
  39. Int J Biol Macromol. 2020 Mar 15;147:699-705 [PMID: 31931067]
  40. RSC Adv. 2020 Jan 27;10(8):4465-4489 [PMID: 35495228]
  41. J Environ Manage. 2011 Mar;92(3):407-18 [PMID: 21138785]
  42. J Hazard Mater. 2020 Jul 15;394:122571 [PMID: 32229386]
  43. Nanomaterials (Basel). 2020 Apr 11;10(4): [PMID: 32290411]
  44. Bioresour Technol. 2015 Apr;181:263-9 [PMID: 25659104]
  45. J Colloid Interface Sci. 2019 Feb 15;536:245-251 [PMID: 30368096]
  46. Int J Biol Macromol. 2020 May 15;151:1299-1313 [PMID: 31751727]
  47. Procedia Environ Sci. 2011;10:1193-1198 [PMID: 32288926]
  48. Carbohydr Polym. 2013 Apr 2;93(2):628-34 [PMID: 23499105]
  49. ACS Appl Mater Interfaces. 2011 Jun;3(6):1813-6 [PMID: 21627309]
  50. Carbohydr Polym. 2013 Jan 2;91(1):74-84 [PMID: 23044107]
  51. J Environ Qual. 2002 Jan-Feb;31(1):309-18 [PMID: 11837435]
  52. Environ Sci Pollut Res Int. 2017 Jan;24(2):1397-1415 [PMID: 27783243]
  53. Langmuir. 2011 Mar 1;27(5):1930-4 [PMID: 21247181]
  54. Int J Biol Macromol. 2016 Dec;93(Pt A):547-556 [PMID: 27614195]
  55. Ecotoxicol Environ Saf. 2018 Feb;148:501-512 [PMID: 29121592]

Word Cloud

Created with Highcharts 10.0.0contaminantsadsorptionhighchemicalmetalsnanocelluloseremediationheavydyesorganicoilseverydaywaterdueenvironmentalmaterialsprovenhighermaterialbioadsorbentcapacitysurfaceregardingadsorbentChemicalseriouslyaffectenvironmentthreatenhumanhealth2milliontonswastereleasedsystemHeavylargestcontributorcover31%totalcompositionEveryapproximately14 000peopledieexposureselectedchemicalsRemovalsafelevelsexpensiveenergyunsustainablecurrentapproachesoxidationbiodegradationphotocatalysisprecipitationreverseosmosiscombinationbiosorptionnanotechnologyoffersnewwayremediateNanostructuredcapacitieslarger-scaleformNanocellulosepromisinghigh-performanceinterestingcharacteristicsmechanicalstrengthhydrophilicchemistryrenewabilitybiodegradabilitybetterbindingaffinitysimilarmacroscalespecificareaabundancehydroxylgroupswithinleadpossiblefunctionalizationdecontaminationpurposesSeveralresearchpapersshowneffectivenessreviewaimsprovideoverviewrecentdevelopmentscontaminationRecentadvancementsmodificationenhanceefficiencytowardshighlightedMoreoverdesorptioncapabilityissuerelateddevelopednanocellulose-basedalsotackledNanocellulose:contaminant

Similar Articles

Cited By