Topological investigation of the reaction mechanism of glycerol carbonate decomposition by bond evolution theory.

Abel Idrice Adjieufack, Vincent Liégeois, Ibrahim Mbouombouo Ndassa, Benoît Champagne
Author Information
  1. Abel Idrice Adjieufack: Physical and Theoretical Chemistry Laboratory University of Yaoundé 1 Cameroon. ORCID
  2. Vincent Liégeois: Laboratory of Theoretical Chemistry and Namur Institute of Structured Matter (NISM), University of Namur Rue de Bruxelles, 61 B-5000 Namur Belgium vincent.liegeois@unamur.be benoit.champagne@unamur.be. ORCID
  3. Ibrahim Mbouombouo Ndassa: Computational Chemistry Laboratory, High Teacher Training College University of Yaoundé 1 Cameroon. ORCID
  4. Benoît Champagne: Laboratory of Theoretical Chemistry and Namur Institute of Structured Matter (NISM), University of Namur Rue de Bruxelles, 61 B-5000 Namur Belgium vincent.liegeois@unamur.be benoit.champagne@unamur.be. ORCID

Abstract

The reaction mechanisms of the decomposition of glycerol carbonate have been investigated at the density functional theory level within the bond evolution theory. The four reaction pathways yield to 3-hydroxypropanal (TS1), glycidol (TS2a and TS2b), and 4-methylene-1,3-dioxolan-2-one (TS3). The study reveals non-concerted processes with the same number (four) of structural stability domains for each reaction pathway. For the two decarboxylation mechanisms, the two first steps are similar. They correspond to the cleavage of two single CO bonds to the detriment of the increased population of the lone pairs of two O atoms. These are followed, along TS1, by the transformation of a CO single bond into a double bond together with a proton transfer to create a CH bond. For TS2a and TS2b, the last step is a cyclization by CO bond formation. For the TS3 pathway, the first stage consists in the cleavage of a CH bond and the transfer of its electron population to both a proton and a C atom, the second step corresponds to the formation of an OH bond, and the last one describes the formation of a CC double bond. Moreover, the analysis of the energies, enthalpies, and free enthalpies of reaction and of activation leads to the conclusion that 3-hydroxypropanal is both the thermodynamic and kinetic product, independent of the method of calculation.

References

  1. J Mol Graph Model. 2020 May;96:107513 [PMID: 31881470]
  2. Phys Chem Chem Phys. 2017 Jul 19;19(28):18288-18302 [PMID: 28561101]
  3. J Phys Chem A. 2017 Nov 9;121(44):8504-8517 [PMID: 29032676]
  4. Angew Chem Int Ed Engl. 2007;46(24):4434-40 [PMID: 17471485]
  5. J Phys Chem A. 2020 May 21;124(20):4068-4080 [PMID: 32324408]
  6. Org Biomol Chem. 2017 Apr 18;15(16):3364-3375 [PMID: 28327748]
  7. J Phys Chem A. 2014 Jun 12;118(23):4147-56 [PMID: 24892794]
  8. J Chem Theory Comput. 2012 Nov 13;8(11):3993-3997 [PMID: 23185140]
  9. Springerplus. 2016 Jun 29;5(1):923 [PMID: 27386367]
  10. Chem Commun (Camb). 2016 Jul 7;52(53):8183-95 [PMID: 27218123]
  11. J Mol Model. 2018 Oct 3;24(10):305 [PMID: 30284057]
  12. Phys Chem Chem Phys. 2011 Dec 14;13(46):20584-92 [PMID: 21660323]
  13. J Phys Chem Lett. 2012 Sep 6;3(17):2500-5 [PMID: 26292140]
  14. J Phys Chem A. 2008 Aug 7;112(31):7128-36 [PMID: 18557601]
  15. Phys Chem Chem Phys. 2008 Nov 28;10(44):6615-20 [PMID: 18989472]
  16. J Chem Phys. 2013 Sep 7;139(9):094105 [PMID: 24028100]
  17. Inorg Chem. 2002 Apr 22;41(8):2164-72 [PMID: 11952370]
  18. J Phys Chem A. 2018 Sep 20;122(37):7472-7481 [PMID: 30141934]
  19. Phys Chem Chem Phys. 2017 Nov 8;19(43):29031-29046 [PMID: 29077108]

Word Cloud

Created with Highcharts 10.0.0bondreactiontwotheoryCOformationmechanismsdecompositionglycerolcarbonateevolutionfour3-hydroxypropanalTS1TS2aTS2bTS3pathwayfirstcleavagesinglepopulationdoubleprotontransferCHlaststepenthalpiesinvestigateddensityfunctionallevelwithinpathwaysyieldglycidol4-methylene-13-dioxolan-2-onestudyrevealsnon-concertedprocessesnumberstructuralstabilitydomainsdecarboxylationstepssimilarcorrespondbondsdetrimentincreasedlonepairsOatomsfollowedalongtransformationtogethercreatecyclizationstageconsistselectronCatomsecondcorrespondsOHonedescribesCCMoreoveranalysisenergiesfreeactivationleadsconclusionthermodynamickineticproductindependentmethodcalculationTopologicalinvestigationmechanism

Similar Articles

Cited By