Catalytically active and thermally stable core-shell gold-silica nanorods for CO oxidation.

Yidong Chen, Sarah Lerch, Zafer Say, Christopher Tiburski, Christoph Langhammer, Kasper Moth-Poulsen
Author Information
  1. Yidong Chen: Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-412-96 Gothenburg Sweden kasper.moth-poulsen@chalmers.se. ORCID
  2. Sarah Lerch: Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-412-96 Gothenburg Sweden kasper.moth-poulsen@chalmers.se. ORCID
  3. Zafer Say: Department of Physics, Chalmers University of Technology SE-412-96 Gothenburg Sweden clangham@chalmers.se. ORCID
  4. Christopher Tiburski: Department of Physics, Chalmers University of Technology SE-412-96 Gothenburg Sweden clangham@chalmers.se. ORCID
  5. Christoph Langhammer: Department of Physics, Chalmers University of Technology SE-412-96 Gothenburg Sweden clangham@chalmers.se. ORCID
  6. Kasper Moth-Poulsen: Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-412-96 Gothenburg Sweden kasper.moth-poulsen@chalmers.se. ORCID

Abstract

Deactivation based on sintering phenomena is one of the most costly issues for the industrial application of metal nanoparticle catalysts. To address this drawback, mesoporous silica encapsulation is reported as a promising strategy to stabilize metallic nanoparticles towards use in high temperature catalytic applications. These protective shells provide significant structural support to the nanoparticles, while the mesoporosity allows for efficient transport of the reactants to the catalytically active surface of the metallic nanoparticle in the core. Here, we extend the use of gold nanorods with mesoporous silica shells by investigating their stability in the CO oxidation reaction as an example of high temperature gas phase catalysis. Gold nanorods were chosen as the model system due to the availability of a simple, high yield synthesis method for both the metallic nanorods and the mesoporous silica shells. We demonstrate the catalytic activity of gold nanorods with mesoporous silica shells at temperatures up to 350 °C over several cycles, as well as the thermal stability up to 500 °C, and compare these results to surfactant-stabilized gold nanorods of similar size, which degrade, and lose most of their catalytic activity, before reaching 150 °C. These results show that the gold nanorods protected by the mesoporous silica shells have a significantly higher thermal stability than surfactant-stabilized gold nanorods and that the mesoporous silica shell allows for stable catalytic activity with little degradation at high temperatures.

References

  1. J Am Chem Soc. 2003 Jul 9;125(27):8340-7 [PMID: 12837106]
  2. ACS Appl Mater Interfaces. 2019 Oct 2;11(39):36196-36204 [PMID: 31418548]
  3. ACS Nano. 2014 Jul 22;8(7):7297-304 [PMID: 24984223]
  4. RSC Adv. 2018 Feb 16;8(14):7651-7669 [PMID: 35539148]
  5. Nat Nanotechnol. 2012 Feb 19;7(4):237-41 [PMID: 22343380]
  6. Chemphyschem. 2016 Feb 3;17(3):364-8 [PMID: 26663755]
  7. Chem Rev. 2021 Jan 27;121(2):834-881 [PMID: 32585087]
  8. Nano Lett. 2008 Sep;8(9):2867-71 [PMID: 18698725]
  9. Nano Lett. 2009 Mar;9(3):1080-4 [PMID: 19199477]
  10. Nano Lett. 2013 Feb 13;13(2):765-71 [PMID: 23286198]
  11. J Org Chem. 2003 Apr 4;68(7):2929-33 [PMID: 12662071]
  12. Acc Chem Res. 2013 Feb 19;46(2):191-202 [PMID: 22587943]
  13. Nano Lett. 2008 Jan;8(1):369-73 [PMID: 18072800]
  14. Nat Mater. 2009 Feb;8(2):126-31 [PMID: 19029893]
  15. J Colloid Interface Sci. 2003 Aug 15;264(2):385-90 [PMID: 16256655]
  16. J Am Chem Soc. 2006 Jan 25;128(3):917-24 [PMID: 16417382]
  17. Langmuir. 2008 May 20;24(10):5233-7 [PMID: 18435552]
  18. Angew Chem Int Ed Engl. 2013 Aug 12;52(33):8526-44 [PMID: 23775769]
  19. Angew Chem Int Ed Engl. 2011 Oct 17;50(43):10064-94 [PMID: 21960461]
  20. Sci Rep. 2018 Mar 15;8(1):4589 [PMID: 29545580]

Word Cloud

Created with Highcharts 10.0.0nanorodsmesoporoussilicashellsgoldhighcatalyticmetallicstabilityactivity°CnanoparticlenanoparticlesusetemperatureallowsactiveCOoxidationtemperaturesthermalresultssurfactant-stabilizedstableDeactivationbasedsinteringphenomenaonecostlyissuesindustrialapplicationmetalcatalystsaddressdrawbackencapsulationreportedpromisingstrategystabilizetowardsapplicationsprotectiveprovidesignificantstructuralsupportmesoporosityefficienttransportreactantscatalyticallysurfacecoreextendinvestigatingreactionexamplegasphasecatalysisGoldchosenmodelsystemdueavailabilitysimpleyieldsynthesismethoddemonstrate350severalcycleswell500comparesimilarsizedegradelosereaching150showprotectedsignificantlyhighershelllittledegradationCatalyticallythermallycore-shellgold-silica

Similar Articles

Cited By