Self-normalized Classification of Parkinson's Disease DaTscan Images.

Yuan Zhou, Hemant D Tagare
Author Information
  1. Yuan Zhou: Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
  2. Hemant D Tagare: Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.

Abstract

Classifying SPECT images requires a preprocessing step which normalizes the images using a normalization region. The choice of the normalization region is not standard, and using different normalization regions introduces normalization region-dependent variability. This paper mathematically analyzes the effect of the normalization region to show that normalized-classification is exactly equivalent to a subspace separation of the half rays of the images under multiplicative equivalence. Using this geometry, a new self-normalized classification strategy is proposed. This strategy eliminates the normalizing region altogether. The theory is used to classify DaTscan images of 365 Parkinson's disease (PD) subjects and 208 healthy control (HC) subjects from the Parkinson's Progression Marker Initiative (PPMI). The theory is also used to understand PD progression from baseline to year 4.

Keywords

References

  1. J Neurol. 2003 Jan;250(1):83-6 [PMID: 12527997]
  2. Eur J Nucl Med Mol Imaging. 2018 Jun;45(6):1052-1062 [PMID: 29275487]
  3. Sensors (Basel). 2020 Oct 17;20(20): [PMID: 33080848]
  4. Rev Esp Med Nucl. 2010 Sep-Oct;29(5):246-50 [PMID: 20655624]
  5. PLoS One. 2015 Jun 18;10(6):e0130274 [PMID: 26086379]
  6. Sci Rep. 2017 Jan 25;7:41069 [PMID: 28120883]
  7. Alzheimers Res Ther. 2016 Jan 15;8:2 [PMID: 26768154]
  8. Front Neuroinform. 2019 Jul 02;13:48 [PMID: 31312131]
  9. Neuroimage. 2010 Jan 15;49(2):1490-5 [PMID: 19770055]
  10. Neuroimage. 2009 Jul 15;46(4):981-8 [PMID: 19303935]
  11. Neuroimage Clin. 2017 Sep 10;16:586-594 [PMID: 28971009]
  12. Neuroimage. 2020 Nov 15;222:117229 [PMID: 32771619]
  13. Med Phys. 2012 Oct;39(10):5971-80 [PMID: 23039635]
  14. Sci Rep. 2020 Jun 9;10(1):9261 [PMID: 32518360]
  15. Mov Disord. 2009;24 Suppl 2:S656-64 [PMID: 19877243]
  16. Neuroimage. 2013 Jan 15;65:449-55 [PMID: 23063448]
  17. EJNMMI Phys. 2017 Nov 29;4(1):29 [PMID: 29188397]
  18. Eur J Nucl Med. 1998 Sep;25(9):1270-6 [PMID: 9724376]
  19. IEEE J Biomed Health Inform. 2017 May;21(3):794-802 [PMID: 28113827]
  20. Med Image Anal. 2017 Jul;39:218-230 [PMID: 28551556]
  21. J Neural Eng. 2015 Apr;12(2):026008 [PMID: 25710187]
  22. Neuroimage. 2017 May 15;152:299-311 [PMID: 28254511]
  23. J Cereb Blood Flow Metab. 2007 Sep;27(9):1533-9 [PMID: 17519979]
  24. J Nucl Med. 2005 Jul;46(7):1109-18 [PMID: 16000279]
  25. IEEE Trans Med Imaging. 2021 Feb;40(2):549-561 [PMID: 33055025]

Grants

  1. R01 NS107328/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0normalizationimagesregionDaTscanParkinson'susingstrategytheoryusedPDsubjectsClassificationDiseaseClassifyingSPECTrequirespreprocessingstepnormalizeschoicestandarddifferentregionsintroducesregion-dependentvariabilitypapermathematicallyanalyzeseffectshownormalized-classificationexactlyequivalentsubspaceseparationhalfraysmultiplicativeequivalenceUsinggeometrynewself-normalizedclassificationproposedeliminatesnormalizingaltogetherclassify365disease208healthycontrolHCProgressionMarkerInitiativePPMIalsounderstandprogressionbaselineyear4Self-normalizedImagesImageMachineLearningPET/SPECTParkinson’s

Similar Articles

Cited By