Metabolic Profiling of Interspecies Interactions During Sessile Bacterial Cultivation Reveals Growth and Sporulation Induction in in Response to .

Jakob Herschend, Madeleine Ernst, Klaus Koren, Alexey V Melnik, Ricardo R da Silva, Henriette L Røder, Zacharias B V Damholt, Per Hägglund, Birte Svensson, Søren J Sørensen, Michael Kühl, Pieter C Dorrestein, Mette Burmølle
Author Information
  1. Jakob Herschend: Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  2. Madeleine Ernst: Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.
  3. Klaus Koren: Aarhus University Centre for Water Technology (WATEC), Department of Biology, Aarhus University, Aarhus, Denmark.
  4. Alexey V Melnik: Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.
  5. Ricardo R da Silva: Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.
  6. Henriette L Røder: Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  7. Zacharias B V Damholt: Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark.
  8. Per Hägglund: Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark.
  9. Birte Svensson: Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark.
  10. Søren J Sørensen: Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
  11. Michael Kühl: Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
  12. Pieter C Dorrestein: Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States.
  13. Mette Burmølle: Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Abstract

The toolbox available for microbiologists to study interspecies interactions is rapidly growing, and with continuously more advanced instruments, we are able to expand our knowledge on establishment and function of microbial communities. However, unravelling molecular interspecies interactions in complex biological systems remains a challenge, and interactions are therefore often studied in simplified communities. Here we perform an in-depth characterization of an observed interspecies interaction between two co-isolated bacteria, and . Using microsensor measurements for mapping the chemical environment, we show how promoted an alkalization of its local environment through degradation of amino acids and release of ammonia. When the two species were grown in proximity, the modified local environment induced a morphological change and growth of followed by sporulation. 2D spatial metabolomics enabled visualization and mapping of the degradation of oligopeptide structures by and morphological changes of through e.g. the release of membrane-associated metabolites. Proteome analysis and microscopy were used to validate the shift from vegetative growth towards sporulation. In summary, we demonstrate how environmental profiling by combined application of microsensor, microscopy, metabolomics and proteomics approaches can reveal growth and sporulation promoting effects resulting from interspecies interactions.

Keywords

References

  1. Appl Environ Microbiol. 2009 Mar;75(6):1589-96 [PMID: 19151179]
  2. Appl Environ Microbiol. 2018 Oct 17;84(21): [PMID: 30143509]
  3. J Bacteriol. 2006 Feb;188(3):834-41 [PMID: 16428386]
  4. Mol Microbiol. 2002 Sep;45(5):1267-76 [PMID: 12207695]
  5. J Cheminform. 2016 Nov 4;8:61 [PMID: 27867422]
  6. FEMS Microbiol Lett. 2000 Dec 1;193(1):1-6 [PMID: 11094270]
  7. Mol Microbiol. 2004 May;52(4):1091-105 [PMID: 15130127]
  8. Nat Methods. 2020 Sep;17(9):905-908 [PMID: 32839597]
  9. Environ Microbiol. 2006 Apr;8(4):755-8 [PMID: 16584487]
  10. Infect Immun. 2000 May;68(5):2621-9 [PMID: 10768953]
  11. Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 [PMID: 24293654]
  12. Environ Microbiol. 2017 Jul;19(7):2893-2905 [PMID: 28618083]
  13. J Bacteriol. 2009 Oct;191(19):6145-56 [PMID: 19592593]
  14. Metabolomics. 2007 Sep;3(3):211-221 [PMID: 24039616]
  15. ISME J. 2016 Jun;10(6):1413-23 [PMID: 26623546]
  16. ISME J. 2014 May;8(5):953-62 [PMID: 24285359]
  17. Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11971-6 [PMID: 26351677]
  18. Genes Dev. 2006 Jul 15;20(14):1911-22 [PMID: 16816000]
  19. Sci Rep. 2017 Nov 28;7(1):16483 [PMID: 29184101]
  20. ISME J. 2017 Jan;11(1):300-303 [PMID: 27505346]
  21. Metabolites. 2019 Jul 16;9(7): [PMID: 31315242]
  22. J Proteome Res. 2012 Jun 1;11(6):3487-97 [PMID: 22537090]
  23. Nat Methods. 2014 Mar;11(3):319-24 [PMID: 24487582]
  24. Nat Rev Microbiol. 2009 Mar;7(3):196-205 [PMID: 19219053]
  25. Nat Biotechnol. 2008 Dec;26(12):1367-72 [PMID: 19029910]
  26. FEMS Microbiol Lett. 2017 Apr 1;364(7): [PMID: 28333204]
  27. Mol Microbiol. 2013 Apr;88(2):283-300 [PMID: 23490197]
  28. Nat Chem Biol. 2017 Jan;13(1):30-37 [PMID: 27820803]
  29. J Proteome Res. 2011 Apr 1;10(4):1794-805 [PMID: 21254760]
  30. ISME J. 2014 Apr;8(4):894-907 [PMID: 24152718]
  31. Sci Rep. 2016 May 12;6:25815 [PMID: 27170469]
  32. Nucleic Acids Res. 2018 Jul 2;46(W1):W200-W204 [PMID: 29905871]
  33. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  34. Proc Natl Acad Sci U S A. 2016 May 31;113(22):6236-41 [PMID: 27194723]
  35. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  36. J Bacteriol. 2011 Dec;193(23):6712-23 [PMID: 21965564]
  37. Genes Dev. 2010 Sep 1;24(17):1893-902 [PMID: 20713508]
  38. Gene. 1998 Jun 8;212(2):179-88 [PMID: 9611260]
  39. Nat Biotechnol. 2016 Aug 9;34(8):828-837 [PMID: 27504778]
  40. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12549-50 [PMID: 26430243]
  41. Trends Microbiol. 2014 Feb;22(2):84-91 [PMID: 24440178]
  42. Mol Cell Proteomics. 2014 Sep;13(9):2513-26 [PMID: 24942700]
  43. Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85 [PMID: 26673716]
  44. Cell. 2006 Feb 10;124(3):549-59 [PMID: 16469701]
  45. Front Microbiol. 2015 Apr 30;6:382 [PMID: 25983726]
  46. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 [PMID: 11309499]
  47. Nat Protoc. 2018 Jan;13(1):134-154 [PMID: 29266099]
  48. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1743-52 [PMID: 22586093]
  49. Mol Membr Biol. 2016 Sep - Dec;33(6-8):125-137 [PMID: 29189113]
  50. ISME J. 2018 Aug;12(8):1940-1951 [PMID: 29670216]
  51. ISME J. 2012 Feb;6(2):259-72 [PMID: 21796217]
  52. PLoS Biol. 2018 Mar 14;16(3):e2004248 [PMID: 29538378]
  53. Appl Microbiol Biotechnol. 2020 Jan;104(1):51-65 [PMID: 31773206]
  54. Microbiology (Reading). 2002 Dec;148(Pt 12):3971-3982 [PMID: 12480901]
  55. J R Soc Interface. 2017 Mar;14(128): [PMID: 28330986]
  56. Nat Methods. 2016 Sep;13(9):731-40 [PMID: 27348712]
  57. Annu Rev Microbiol. 2016 Sep 8;70:83-101 [PMID: 27297125]
  58. Microbiology (Reading). 2009 Jun;155(Pt 6):1786-1799 [PMID: 19383680]
  59. Nature. 2002 Jul 11;418(6894):171-4 [PMID: 12110887]
  60. ISME J. 2015 Jan;9(1):81-9 [PMID: 24936766]
  61. Curr Opin Microbiol. 2017 Apr;36:76-84 [PMID: 28237903]
  62. Extremophiles. 2000 Jun;4(3):131-6 [PMID: 10879557]
  63. PLoS Comput Biol. 2018 Apr 18;14(4):e1006089 [PMID: 29668671]
  64. BMC Bioinformatics. 2010 Jul 23;11:395 [PMID: 20650010]
  65. Curr Opin Microbiol. 2018 Apr;42:104-109 [PMID: 29197823]
  66. FEMS Microbiol Lett. 2013 Jan;338(1):95-100 [PMID: 23106414]

MeSH Term

Biofilms
Metabolomics
Paenibacillus
Xanthomonas

Word Cloud

Created with Highcharts 10.0.0interspeciesinteractionssporulationmicrosensorenvironmentgrowthcommunitiestwomappinglocaldegradationreleasemorphologicalmetabolomicsmicroscopytoolboxavailablemicrobiologistsstudyrapidlygrowingcontinuouslyadvancedinstrumentsableexpandknowledgeestablishmentfunctionmicrobialHoweverunravellingmolecularcomplexbiologicalsystemsremainschallengethereforeoftenstudiedsimplifiedperformin-depthcharacterizationobservedinteractionco-isolatedbacteriaUsingmeasurementschemicalshowpromotedalkalizationaminoacidsammoniaspeciesgrownproximitymodifiedinducedchangefollowed2Dspatialenabledvisualizationoligopeptidestructureschangesegmembrane-associatedmetabolitesProteomeanalysisusedvalidateshiftvegetativetowardssummarydemonstrateenvironmentalprofilingcombinedapplicationproteomicsapproachescanrevealpromotingeffectsresultingMetabolicProfilingInterspeciesInteractionsSessileBacterialCultivationRevealsGrowthSporulationInductionResponseomicspHstabilization

Similar Articles

Cited By