Modeling traumatic brain injury with human brain organoids.

Dennis Jgamadze, Victoria E Johnson, John A Wolf, D Kacy Cullen, Hongjun Song, Guo-Li Ming, Douglas H Smith, H Isaac Chen
Author Information
  1. Dennis Jgamadze: Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  2. Victoria E Johnson: Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  3. John A Wolf: Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  4. D Kacy Cullen: Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  5. Hongjun Song: Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  6. Guo-Li Ming: Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  7. Douglas H Smith: Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  8. H Isaac Chen: Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Abstract

Traumatic brain injury (TBI) remains a prominent public health concern despite several decades of attempts to develop therapies for the associated neurological and cognitive deficits. Effective models of this condition are imperative for better defining its pathophysiology and testing therapeutics. Human brain organoids are stem cell-derived neural tissues that recapitulate many of the steps of normal neurodevelopment, resulting in the reproduction of a substantial degree of brain architecture. Organoids are highly relevant to clinical conditions because of their human nature and three-dimensional tissue structure, yet they are easier to manipulate and interrogate experimentally than animals. Thus, they have the potential to serve as a novel platform for studying TBI. In this article, we discuss available models of TBI, active areas of inquiry on brain organoids, and how these two concepts could be merged.

Keywords

References

  1. J Biomech. 2005 May;38(5):1093-105 [PMID: 15797591]
  2. Cell. 2020 Jan 9;180(1):188-204.e22 [PMID: 31883794]
  3. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20284-9 [PMID: 24277810]
  4. Neuron. 2017 Dec 6;96(5):1041-1054.e5 [PMID: 29103808]
  5. iScience. 2019 Nov 22;21:57-67 [PMID: 31654854]
  6. Cell Stem Cell. 2019 Mar 7;24(3):487-497.e7 [PMID: 30799279]
  7. Nature. 2017 May 4;545(7652):48-53 [PMID: 28445462]
  8. Cell. 2017 Nov 2;171(4):877-889.e17 [PMID: 28965759]
  9. Cell Stem Cell. 2013 May 2;12(5):520-30 [PMID: 23642363]
  10. Nat Biotechnol. 2018 Jun;36(5):432-441 [PMID: 29658944]
  11. FASEB J. 2010 May;24(5):1401-10 [PMID: 20019243]
  12. J Neurotrauma. 2005 Feb;22(2):277-90 [PMID: 15716633]
  13. Cell Stem Cell. 2020 Jan 2;26(1):48-63.e6 [PMID: 31901251]
  14. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15672-7 [PMID: 26644564]
  15. Cell Stem Cell. 2019 Oct 3;25(4):558-569.e7 [PMID: 31474560]
  16. Science. 2016 May 13;352(6287):816-8 [PMID: 27064148]
  17. J Neurosci Methods. 2006 Jan 30;150(2):192-201 [PMID: 16098599]
  18. Nat Methods. 2019 Jan;16(1):75-78 [PMID: 30573846]
  19. Nat Methods. 2015 Jul;12(7):671-8 [PMID: 26005811]
  20. J Neuropathol Exp Neurol. 2009 Jul;68(7):709-35 [PMID: 19535999]
  21. Dev Biol. 2016 Dec 15;420(2):199-209 [PMID: 27402594]
  22. Cell Stem Cell. 2017 Mar 2;20(3):385-396.e3 [PMID: 28041895]
  23. Br J Neurosurg. 2008 Apr;22(2):200-6 [PMID: 18348014]
  24. Cancer Res. 2016 Apr 15;76(8):2465-77 [PMID: 26896279]
  25. J Neurosci. 2004 May 12;24(19):4605-13 [PMID: 15140932]
  26. Nat Rev Neurosci. 2017 Oct;18(10):573-584 [PMID: 28878372]
  27. J Neurotrauma. 1993 Winter;10(4):431-44 [PMID: 8145266]
  28. Cell Stem Cell. 2020 May 7;26(5):766-781.e9 [PMID: 32142682]
  29. J Neurosci. 1999 Jun 1;19(11):4263-9 [PMID: 10341230]
  30. Nat Methods. 2015 Dec;12(12):1197-204 [PMID: 26480475]
  31. Lab Chip. 2013 Feb 7;13(3):432-42 [PMID: 23233120]
  32. J Neurotrauma. 1995 Jun;12(3):325-39 [PMID: 7473807]
  33. Exp Neurol. 2018 Feb;300:121-134 [PMID: 29104114]
  34. Nat Commun. 2015 Nov 17;6:8896 [PMID: 26573335]
  35. Nature. 2020 Feb;578(7793):142-148 [PMID: 31996853]
  36. Nat Neurosci. 2019 Apr;22(4):669-679 [PMID: 30886407]
  37. Dev Dyn. 2019 Jan;248(1):53-64 [PMID: 30091290]
  38. Nature. 2018 Apr;556(7702):429-432 [PMID: 29691509]
  39. Ann Neurol. 1982 Dec;12(6):564-74 [PMID: 7159060]
  40. Neuron. 1989 Jun;2(6):1541-5 [PMID: 2576374]
  41. Nature. 2013 Sep 19;501(7467):373-9 [PMID: 23995685]
  42. Cell Rep. 2016 Dec 20;17(12):3369-3384 [PMID: 28009303]
  43. Neuron. 2017 Aug 16;95(4):779-790.e6 [PMID: 28817799]
  44. iScience. 2018 Jun 29;4:294-301 [PMID: 30240748]
  45. Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13811-6 [PMID: 25114234]
  46. Annu Rev Biomed Eng. 2011 Aug 15;13:91-126 [PMID: 21529164]
  47. Cell. 2015 Jul 16;162(2):375-390 [PMID: 26186191]
  48. Cell Stem Cell. 2019 Oct 3;25(4):462-472 [PMID: 31585092]
  49. J Neurotrauma. 1997 Sep;14(9):651-63 [PMID: 9337127]
  50. Cell. 2016 May 19;165(5):1238-1254 [PMID: 27118425]
  51. J Neurosci Res. 1998 Apr 15;52(2):220-9 [PMID: 9579412]
  52. Nature. 2017 May 4;545(7652):54-59 [PMID: 28445465]
  53. Nature. 2019 Jun;570(7762):523-527 [PMID: 31168097]
  54. Nature. 2016 May 11;534(7606):267-71 [PMID: 27279226]
  55. J Neurotrauma. 2005 Oct;22(10):1081-91 [PMID: 16238485]
  56. J Neurosci Res. 2007 Dec;85(16):3642-51 [PMID: 17671988]
  57. Brain. 2013 Jan;136(Pt 1):28-42 [PMID: 23365092]
  58. Nat Neurosci. 2019 Mar;22(3):484-491 [PMID: 30692691]

Grants

  1. IK2 RX002013/RRD VA
  2. R01 NS092398/NINDS NIH HHS
  3. R01 NS094003/NINDS NIH HHS

Word Cloud

Created with Highcharts 10.0.0brainorganoidsinjuryTBITraumaticmodelshumanremainsprominentpublichealthconcerndespiteseveraldecadesattemptsdeveloptherapiesassociatedneurologicalcognitivedeficitsEffectiveconditionimperativebetterdefiningpathophysiologytestingtherapeuticsHumanstemcell-derivedneuraltissuesrecapitulatemanystepsnormalneurodevelopmentresultingreproductionsubstantialdegreearchitectureOrganoidshighlyrelevantclinicalconditionsnaturethree-dimensionaltissuestructureyeteasiermanipulateinterrogateexperimentallyanimalsThuspotentialservenovelplatformstudyingarticlediscussavailableactiveareasinquirytwoconceptsmergedModelingtraumaticBrainNeurodegenerationStemcells

Similar Articles

Cited By