Cone-Driven Retinal Responses Are Shaped by Rod But Not Cone HCN1.

Colten K Lankford, Yumiko Umino, Deepak Poria, Vladimir Kefalov, Eduardo Solessio, Sheila A Baker
Author Information
  1. Colten K Lankford: Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa 52242.
  2. Yumiko Umino: Center for Vision Research, Department of Ophthalmology and Visual Sciences, State University of New York Upstate Medical University, Syracuse, New York 13210.
  3. Deepak Poria: Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California 92697.
  4. Vladimir Kefalov: Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California 92697.
  5. Eduardo Solessio: Center for Vision Research, Department of Ophthalmology and Visual Sciences, State University of New York Upstate Medical University, Syracuse, New York 13210.
  6. Sheila A Baker: Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa 52242 sheila-baker@uiowa.edu. ORCID

Abstract

Signal integration of converging neural circuits is poorly understood. One example is in the retina where the integration of rod and cone signaling is responsible for the large dynamic range of vision. The relative contribution of rods versus cones is dictated by a complex function involving background light intensity and stimulus temporal frequency. One understudied mechanism involved in coordinating rod and cone signaling onto the shared retinal circuit is the hyperpolarization activated current () mediated by hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels expressed in rods and cones. opposes membrane hyperpolarization driven by activation of the phototransduction cascade and modulates the strength and kinetics of the photoreceptor voltage response. We examined conditional knock-out (KO) of HCN1 from mouse rods using electroretinography (ERG). In the absence of HCN1, rod responses are prolonged in dim light which altered the response to slow modulation of light intensity both at the level of retinal signaling and behavior. Under brighter intensities, cone-driven signaling was suppressed. To our surprise, conditional KO of HCN1 from mouse cones had no effect on cone-mediated signaling. We propose that is dispensable in cones because of the high level of temporal control of cone phototransduction. Thus, HCN1 is required for cone-driven retinal signaling only indirectly by modulating the voltage response of rods to limit their output. Hyperpolarization gated hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels carry a feedback current that helps to reset light-activated photoreceptors. Using conditional HCN1 knock-out (KO) mice we show that ablating HCN1 from rods allows rods to signal in bright light when they are normally shut down. Instead of enhancing vision this results in suppressing cone signaling. Conversely, ablating HCN1 from cones was of no consequence. This work provides novel insights into the integration of rod and cone signaling in the retina and challenges our assumptions about the role of HCN1 in cones.

Keywords

References

  1. Neuron. 2012 Oct 18;76(2):266-80 [PMID: 23083731]
  2. J Neurosci. 2004 Dec 8;24(49):11182-92 [PMID: 15590935]
  3. PLoS Biol. 2017 Apr 12;15(4):e2001210 [PMID: 28403143]
  4. J Neurosci. 2010 Sep 15;30(37):12495-507 [PMID: 20844144]
  5. Eur J Neurosci. 2008 Dec;28(11):2221-30 [PMID: 19019198]
  6. Invest Ophthalmol Vis Sci. 2004 Dec;45(12):4611-6 [PMID: 15557474]
  7. Neurobiol Dis. 2018 Oct;118:55-63 [PMID: 29936235]
  8. Invest Ophthalmol Vis Sci. 2020 Jun 3;61(6):24 [PMID: 32531058]
  9. Adv Exp Med Biol. 2006;572:173-8 [PMID: 17249572]
  10. PLoS One. 2016 Jan 25;11(1):e0147728 [PMID: 26807953]
  11. J Biol Chem. 2012 Jan 13;287(3):1620-6 [PMID: 22074925]
  12. Exp Eye Res. 2018 May;170:108-116 [PMID: 29486162]
  13. J Gen Physiol. 2020 Mar 2;152(3): [PMID: 31986199]
  14. Adv Exp Med Biol. 2006;572:169-72 [PMID: 17249571]
  15. Pflugers Arch. 2021 Sep;473(9):1555-1568 [PMID: 33742309]
  16. Front Biosci (Landmark Ed). 2009 Jan 01;14(7):2730-7 [PMID: 19273231]
  17. eNeuro. 2018 Aug 29;5(4): [PMID: 30225342]
  18. J Neurosci. 2008 Jan 2;28(1):189-98 [PMID: 18171936]
  19. Nat Commun. 2011 Nov 08;2:532 [PMID: 22068599]
  20. J Neurophysiol. 2007 Sep;98(3):1213-22 [PMID: 17652418]
  21. Invest Ophthalmol Vis Sci. 2014 Mar 06;55(3):1339-47 [PMID: 24526444]
  22. Exp Eye Res. 2019 Jul;184:234-242 [PMID: 31075224]
  23. Hum Mol Genet. 2022 Mar 31;31(7):1035-1050 [PMID: 34652420]
  24. PLoS One. 2007 Dec 19;2(12):e1327 [PMID: 18091997]
  25. Ophthalmic Physiol Opt. 2006 May;26(3):225-39 [PMID: 16684149]
  26. F1000Res. 2018 May 23;7: [PMID: 29899971]
  27. Neuron. 1989 Nov;3(5):573-81 [PMID: 2642011]
  28. J Neurosci Methods. 2016 Nov 1;273:74-85 [PMID: 27494989]
  29. Elife. 2018 Oct 09;7: [PMID: 30299254]
  30. Front Psychol. 2015 Jan 22;5:1594 [PMID: 25657632]
  31. Annu Rev Vis Sci. 2015 Nov 24;1:263-289 [PMID: 28532365]
  32. Nature. 1978 Mar 30;272(5652):466-9 [PMID: 416359]
  33. PLoS One. 2012;7(1):e29812 [PMID: 22279546]
  34. Vision Res. 1999 May;39(10):1767-74 [PMID: 10343868]
  35. J Neurosci. 2019 Apr 17;39(16):3041-3056 [PMID: 30737308]
  36. Brain. 2018 Nov 1;141(11):3160-3178 [PMID: 30351409]
  37. Neuron. 2015 Sep 23;87(6):1248-1260 [PMID: 26402607]
  38. J Neurosci. 2009 May 6;29(18):5841-53 [PMID: 19420251]
  39. Eur J Neurosci. 2003 May;17(10):2084-96 [PMID: 12786975]

Grants

  1. R01 EY020542/NEI NIH HHS
  2. R01 EY026216/NEI NIH HHS
  3. R01 EY027387/NEI NIH HHS
  4. R01 EY030912/NEI NIH HHS

MeSH Term

Animals
Electroretinography
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
Mice
Mice, Knockout
Nucleotides, Cyclic
Potassium Channels
Retina
Retinal Cone Photoreceptor Cells
Retinal Rod Photoreceptor Cells

Chemicals

Hcn1 protein, mouse
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
Nucleotides, Cyclic
Potassium Channels

Word Cloud

Created with Highcharts 10.0.0HCN1signalingconerodsconesrodlightintegrationretinalresponseconditionalKOOneretinavisionintensitytemporalhyperpolarizationcurrenthyperpolarization-activatedcyclicnucleotide-gated1channelsphototransductionvoltageknock-outmouseERGlevelcone-drivenablatingSignalconvergingneuralcircuitspoorlyunderstoodexampleresponsiblelargedynamicrangerelativecontributionversusdictatedcomplexfunctioninvolvingbackgroundstimulusfrequencyunderstudiedmechanisminvolvedcoordinatingontosharedcircuitactivatedmediatedexpressedopposesmembranedrivenactivationcascademodulatesstrengthkineticsphotoreceptorexaminedusingelectroretinographyabsenceresponsesprolongeddimalteredslowmodulationbehaviorbrighterintensitiessuppressedsurpriseeffectcone-mediatedproposedispensablehighcontrolThusrequiredindirectlymodulatinglimitoutputHyperpolarizationgatedcarryfeedbackhelpsresetlight-activatedphotoreceptorsUsingmiceshowallowssignalbrightnormallyshutInsteadenhancingresultssuppressingConverselyconsequenceworkprovidesnovelinsightschallengesassumptionsroleCone-DrivenRetinalResponsesShapedRodConeadaptationphotovoltage

Similar Articles

Cited By