Bilayer WSe as a natural platform for interlayer exciton condensates in the strong coupling limit.
Qianhui Shi, En-Min Shih, Daniel Rhodes, Bumho Kim, Katayun Barmak, Kenji Watanabe, Takashi Taniguchi, Zlatko Papić, Dmitry A Abanin, James Hone, Cory R Dean
Author Information
Qianhui Shi: Department of Physics, Columbia University, New York, NY, USA. ORCID
En-Min Shih: Department of Physics, Columbia University, New York, NY, USA. ORCID
Daniel Rhodes: Department of Mechanical Engineering, Columbia University, New York, NY, USA.
Bumho Kim: Department of Mechanical Engineering, Columbia University, New York, NY, USA. ORCID
Katayun Barmak: Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA. ORCID
Kenji Watanabe: Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan. ORCID
Takashi Taniguchi: International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan. ORCID
Zlatko Papić: School of Physics and Astronomy, University of Leeds, Leeds, UK.
Dmitry A Abanin: Department of Theoretical Physics, University of Geneva, Geneva, Switzerland.
James Hone: Department of Mechanical Engineering, Columbia University, New York, NY, USA. ORCID
Cory R Dean: Department of Physics, Columbia University, New York, NY, USA. cd2478@columbia.edu.
Exciton condensates (ECs) are macroscopic coherent states arising from condensation of electron-hole pairs. Bilayer heterostructures, consisting of two-dimensional electron and hole layers separated by a tunnel barrier, provide a versatile platform to realize and study ECs. The tunnel barrier suppresses recombination, yielding long-lived excitons. However, this separation also reduces interlayer Coulomb interactions, limiting the exciton binding strength. Here, we report the observation of ECs in naturally occurring 2H-stacked bilayer WSe. In this system, the intrinsic spin-valley structure suppresses interlayer tunnelling even when the separation is reduced to the atomic limit, providing access to a previously unattainable regime of strong interlayer coupling. Using capacitance spectroscopy, we investigate magneto-ECs, formed when partially filled Landau levels couple between the layers. We find that the strong-coupling ECs show dramatically different behaviour compared with previous reports, including an unanticipated variation of EC robustness with the orbital number, and find evidence for a transition between two types of low-energy charged excitations. Our results provide a demonstration of tuning EC properties by varying the constituent single-particle wavefunctions.
References
Blatt, J. M., Böer, K. W. & Brandt, W. Bose-Einstein condensation of excitons. Phys. Rev. 126, 1691–1692 (1962).
[DOI: 10.1103/PhysRev.126.1691]
Lozovik, Y. E. & Yudson, V. Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).
Snoke, D. Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368–1372 (2002).
[DOI: 10.1126/science.1078082]
Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).
[DOI: 10.1038/nature03081]
Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).
[DOI: 10.1038/nature00943]
Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).
[DOI: 10.1146/annurev-conmatphys-031113-133832]
Liu, X., Taniguchi, T., Watanabe, K., Halperin, B. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).
[DOI: 10.1038/nphys4116]
Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).
[DOI: 10.1038/nphys4140]
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).
[DOI: 10.1038/s41586-019-1591-7]
Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).
[DOI: 10.1038/s41586-021-03947-9]
Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal-semiconductor transistion. Rev. Mod. Phys. 40, 755–766 (1968).
[DOI: 10.1103/RevModPhys.40.755]
Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in TaNiSe. Nat. Commun. 8, 14408 (2017).
[DOI: 10.1038/ncomms14408]
Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).
[DOI: 10.1126/science.aam6432]
Li, Z. et al. Possible excitonic insulating phase in quantum-confined Sb nanoflakes. Nano Lett. 19, 4960–4964 (2019).
[DOI: 10.1021/acs.nanolett.9b01123]
Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys 18, 87–93 (2022).
[DOI: 10.1038/s41567-021-01422-w]
Ataei, S. S., Varsano, D., Molinari, E. & Rontani, M. Evidence of ideal excitonic insulator in bulk MoS under pressure. Proc. Natl Acad. Sci. USA 118, e2010110118 (2021).
[DOI: 10.1073/pnas.2010110118]
Baldini, E. et al. The spontaneous symmetry breaking in TaNiSe is structural in nature. Preprint at arXiv https://doi.org/10.48550/arXiv.2007.02909 (2020).
Mazza, G. et al. Nature of symmetry breaking at the excitonic insulator transition: TaNiSe. Phys. Rev. Lett. 124, 197601 (2020).
[DOI: 10.1103/PhysRevLett.124.197601]
Butov, L. Condensation and pattern formation in cold exciton gases in coupled quantum wells. J. Phys. Condens. Matter 16, R1577 (2004).
[DOI: 10.1088/0953-8984/16/50/R02]
Min, H., Bistritzer, R., Su, J.-J. & MacDonald, A. H. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401 (2008).
[DOI: 10.1103/PhysRevB.78.121401]
Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).
[DOI: 10.1038/ncomms5555]
Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).
[DOI: 10.1126/science.aaw4194]
Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).
[DOI: 10.1038/nature11302]
Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).
[DOI: 10.1126/science.abg1110]
Kim, Y., Moon, P., Watanabe, K., Taniguchi, T. & Smet, J. H. Odd integer quantum Hall states with interlayer coherence in twisted bilayer graphene. Nano Lett. 21, 4249–4254 (2021).
[DOI: 10.1021/acs.nanolett.1c00360]
Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013).
[DOI: 10.1038/ncomms3053]
Zeng, H. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).
[DOI: 10.1038/srep01608]
Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).
[DOI: 10.1038/nphys2942]
Fallahazad, B. et al. Shubnikov–de Haas oscillations of high-mobility holes in monolayer and bilayer WSe: Landau level degeneracy, effective mass, and negative compressibility. Phys. Rev. Lett. 116, 086601 (2016).
[DOI: 10.1103/PhysRevLett.116.086601]
Pisoni, R. et al. Absence of interlayer tunnel coupling of k-valley electrons in bilayer MoS. Phys. Rev. Lett. 123, 117702 (2019).
[DOI: 10.1103/PhysRevLett.123.117702]
Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe. Nat. Nanotechnol. 15, 569–573 (2020).
[DOI: 10.1038/s41565-020-0685-6]
Young, A. F. & Levitov, L. S. Capacitance of graphene bilayer as a probe of layer-specific properties. Phys. Rev. B 84, 085441 (2011).
[DOI: 10.1103/PhysRevB.84.085441]
Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).
[DOI: 10.1038/nature23893]
Li, J. I. A. et al. Pairing states of composite fermions in double-layer graphene. Nat. Phys. 15, 898–903 (2019).
[DOI: 10.1038/s41567-019-0547-z]
Moon, K. et al. Spontaneous interlayer coherence in double-layer quantum Hall systems: charged vortices and Kosterlitz-Thouless phase transitions. Phys. Rev. B 51, 5138–5170 (1995).
[DOI: 10.1103/PhysRevB.51.5138]
Sondhi, S. L., Karlhede, A., Kivelson, S. A. & Rezayi, E. H. Skyrmions and the crossover from the integer to fractional quantum Hall effect at small Zeeman energies. Phys. Rev. B 47, 16419–16426 (1993).
[DOI: 10.1103/PhysRevB.47.16419]
Wu, X.-G. & Sondhi, S. L. Skyrmions in higher Landau levels. Phys. Rev. B 51, 14725–14728 (1995).
[DOI: 10.1103/PhysRevB.51.14725]
Zhang, Y.-H., Sheng, D. N. & Vishwanath, A. SU(4) chiral spin liquid, exciton supersolid, and electric detection in moiré bilayers. Phys. Rev. Lett. 127, 247701 (2021).
[DOI: 10.1103/PhysRevLett.127.247701]
Grants
DE-SC0016703/DOE | SC | Basic Energy Sciences (BES)