Global seasonal forecasts of marine heatwaves.

Michael G Jacox, Michael A Alexander, Dillon Amaya, Emily Becker, Steven J Bograd, Stephanie Brodie, Elliott L Hazen, Mercedes Pozo Buil, Desiree Tommasi
Author Information
  1. Michael G Jacox: NOAA Southwest Fisheries Science Center, Monterey, CA, USA. michael.jacox@noaa.gov. ORCID
  2. Michael A Alexander: NOAA Physical Sciences Laboratory, Boulder, CO, USA. ORCID
  3. Dillon Amaya: NOAA Physical Sciences Laboratory, Boulder, CO, USA. ORCID
  4. Emily Becker: University of Miami, Miami, FL, USA.
  5. Steven J Bograd: NOAA Southwest Fisheries Science Center, Monterey, CA, USA. ORCID
  6. Stephanie Brodie: NOAA Southwest Fisheries Science Center, Monterey, CA, USA.
  7. Elliott L Hazen: NOAA Southwest Fisheries Science Center, Monterey, CA, USA. ORCID
  8. Mercedes Pozo Buil: NOAA Southwest Fisheries Science Center, Monterey, CA, USA.
  9. Desiree Tommasi: University of California Santa Cruz, Santa Cruz, CA, USA. ORCID

Abstract

Marine heatwaves (MHWs)-periods of exceptionally warm ocean temperature lasting weeks to years-are now widely recognized for their capacity to disrupt marine ecosystems. The substantial ecological and socioeconomic impacts of these extreme events present significant challenges to marine resource managers, who would benefit from forewarning of MHWs to facilitate proactive decision-making. However, despite extensive research into the physical drivers of MHWs, there has been no comprehensive global assessment of our ability to predict these events. Here we use a large multimodel ensemble of global climate forecasts to develop and assess MHW forecasts that cover the world's oceans with lead times of up to a year. Using 30 years of retrospective forecasts, we show that the onset, intensity and duration of MHWs are often predictable, with skilful forecasts possible from 1 to 12 months in advance depending on region, season and the state of large-scale climate modes, such as the El Niño/Southern Oscillation. We discuss considerations for setting decision thresholds based on the probability that a MHW will occur, empowering stakeholders to take appropriate actions based on their risk profile. These results highlight the potential for operational MHW forecasts, analogous to forecasts of extreme weather phenomena, to promote climate resilience in global marine ecosystems.

References

  1. Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019). [DOI: 10.1038/s41558-019-0412-1]
  2. Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 1–4 (2018). [DOI: 10.1038/s41467-018-03163-6]
  3. Oliver, E. C. et al. Marine heatwaves. Annu. Rev. Mar. Sci. 13, 313–342 (2021). [DOI: 10.1146/annurev-marine-032720-095144]
  4. Mills, K. E. et al. Fisheries Management in a Changing Climate: Lessons from the 2012 Ocean Heat Wave in the Northwest Atlantic. Oceanography 26, 191–195 (2013). [DOI: 10.5670/oceanog.2013.27]
  5. Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 650 (2020). [DOI: 10.1038/s41467-019-14215-w]
  6. Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific Cod Fishery. Front. Mar. Sci. 7, 703 (2020). [DOI: 10.3389/fmars.2020.00703]
  7. Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021). [PMID: 34672757]
  8. Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr. 25, 45–56 (2016). [DOI: 10.1111/fog.12083]
  9. Tommasi, D. et al. Managing living marine resources in a dynamic environment: the role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49 (2017). [DOI: 10.1016/j.pocean.2016.12.011]
  10. Jacox, M. G. et al. Seasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments. Prog. Oceanogr. 183, 102307 (2020). [DOI: 10.1016/j.pocean.2020.102307]
  11. Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020). [DOI: 10.1038/s43017-020-0068-4]
  12. Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019). [PMID: 31201309]
  13. Kirtman, B. P. et al. The North American Multimodel Ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Am. Meteorol. Soc. 95, 585–601 (2014). [DOI: 10.1175/BAMS-D-12-00050.1]
  14. Becker, E., Kirtman, B. P. & Pegion, K. Evolution of the North American Multi-Model Ensemble. Geophys. Res. Lett. 47, e2020GL087408 (2020). [DOI: 10.1029/2020GL087408]
  15. Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwave events. Sci Rep. 10, 1–15 (2020).
  16. McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. 43, 10,366–10,376 (2016). [DOI: 10.1002/2016GL070023]
  17. Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016). [DOI: 10.5670/oceanog.2016.32]
  18. Bellquist, L., Saccomanno, V., Semmens, B. X., Gleason, M. & Wilson, J. The rise in climate change-induced federal fishery disasters in the United States. PeerJ 9, e11186 (2021). [PMID: 33981495]
  19. Jacox, M. G., Alexander, M. A., Bograd, S. J. & Scott, J. D. Thermal displacement by marine heatwaves. Nature 584, 82–86 (2020). [PMID: 32760046]
  20. Barnston, A. G., Tippett, M. K., Ranganathan, M. & L’Heureux, M. L. Deterministic skill of ENSO predictions from the North American Multimodel Ensemble. Clim. Dyn. 53, 7215–7234 (2019). [PMID: 31929685]
  21. L’Heureux, M. L. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 227–246 (Wiley-American Geophysical Union, 2020).
  22. Liu, G. et al. Predicting heat stress to inform reef management: NOAA Coral Reef Watch’s 4-month coral bleaching outlook. Front. Mar. Sci. 5, 57 (2018). [DOI: 10.3389/fmars.2018.00057]
  23. Jacox, M. G., Tommasi, D., Alexander, M. A., Hervieux, G. & Stock, C. A. Predicting the evolution of the 2014–2016 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6, 497 (2019). [DOI: 10.3389/fmars.2019.00497]
  24. Jacox, M. G., Alexander, M. A., Stock, C. A. & Hervieux, G. On the skill of seasonal sea surface temperature forecasts in the California Current System and its connection to ENSO variability. Clim. Dyn. 53, 7519–7533 (2019). [DOI: 10.1007/s00382-017-3608-y]
  25. Shin, S.-I. & Newman, M. Seasonal predictability of global and North American coastal sea surface temperature and height anomalies. Geophys. Res. Lett. 48, e2020GL091886 (2021). [DOI: 10.1029/2020GL091886]
  26. Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015). [DOI: 10.1038/nclimate2743]
  27. Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019). [DOI: 10.1038/s41558-019-0505-x]
  28. Callahan, C. W. et al. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Clim. Change 11, 752–757 (2021). [DOI: 10.1038/s41558-021-01099-2]
  29. Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021). [DOI: 10.1038/s41558-021-01132-4]
  30. Payne, M. R. et al. Lessons from the first generation of marine ecological forecast products. Front. Mar. Sci. 4, 289 (2017). [DOI: 10.3389/fmars.2017.00289]
  31. Brodie, S. et al. Seasonal forecasting of dolphinfish distribution in eastern Australia to aid recreational fishers and managers. Deep Sea Res. Part II Top. Stud. Oceanogr. 140, 222–229 (2017). [DOI: 10.1016/j.dsr2.2017.03.004]
  32. Le Bris, A. et al. Climate vulnerability and resilience in the most valuable North American fishery. Proc. Natl Acad. Sci. USA 115, 1831–1836 (2018). [PMID: 29358389]
  33. Samhouri, J. F. et al. Marine heatwave challenges solutions to human–wildlife conflict. Proc. R. Soc. B Biol. Sci. 288, 20211607 (2021). [DOI: 10.1098/rspb.2021.1607]
  34. Heron, S. F. et al. Validation of reef-scale thermal stress satellite products for coral bleaching monitoring. Remote Sens. 8, 59 (2016). [DOI: 10.3390/rs8010059]
  35. Eakin, C. M. et al. Ding, dong, the witch is dead (?)—three years of global coral bleaching 2014–2017. Reef Encount. 32, 33–38 (2017).
  36. Spillman, C. M. & Hobday, A. J. Dynamical seasonal ocean forecasts to aid salmon farm management in a climate hotspot. Clim. Risk Manag. 1, 25–38 (2014). [DOI: 10.1016/j.crm.2013.12.001]
  37. Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, 137 (2018). [DOI: 10.3389/fmars.2018.00137]
  38. Holsman, K. K. et al. Towards climate resiliency in fisheries management. ICES J. Mar. Sci. 76, 1368–1378 (2019).
  39. Xu, T., Newman, M., Capotondi, A. & Di Lorenzo, E. The continuum of Northeast Pacific marine heatwaves and their relationship to the Tropical Pacific. Geophys. Res. Lett. 48, 2020GL090661 (2021). [DOI: 10.1029/2020GL090661]
  40. Hobday, A. J. et al. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES J. Mar. Sci. 76, 1244–1256 (2019).
  41. Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016). [DOI: 10.5194/essd-8-165-2016]
  42. Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007). [DOI: 10.1175/2007JCLI1824.1]
  43. Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016). [DOI: 10.1016/j.pocean.2015.12.014]
  44. Stock, C. A. et al. Seasonal sea surface temperature anomaly prediction for coastal ecosystems. Prog. Oceanogr. 137, 219–236 (2015). [DOI: 10.1016/j.pocean.2015.06.007]
  45. Data and Bias Correction for Decadal Climate Predictions ICPO Publication Series 150 5 (ICPO, 2011).
  46. Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018). [DOI: 10.5670/oceanog.2018.205]
  47. Jacox, M. G. Marine heatwaves in a changing climate. Nature 571, 485–487 (2019). [PMID: 31332352]
  48. Hogan, R. & Mason, I. in Forecast Verification: A Practitioner’s Guide in Atmospheric Science 31–59 (Wiley, 2012).
  49. Ferro, C. A. & Stephenson, D. B. Extremal dependence indices: improved verification measures for deterministic forecasts of rare binary events. Weather Forecast. 26, 699–713 (2011). [DOI: 10.1175/WAF-D-10-05030.1]
  50. Marshall, A. G. et al. Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim. Dyn. 43, 1915–1937 (2014). [DOI: 10.1007/s00382-013-2016-1]
  51. Gandin, L. S. & Murphy, A. H. Equitable skill scores for categorical forecasts. Mon. Weather Rev. 120, 361–370 (1992). [DOI: 10.1175/1520-0493(1992)120<0361]
  52. Merryfield, W. J. et al. The Canadian seasonal to interannual prediction system. Part I: Models and initialization. Mon. Weather Rev. 141, 2910–2945 (2013). [DOI: 10.1175/MWR-D-12-00216.1]
  53. Lin, H. et al. The Canadian Seasonal to Interannual Prediction System Version 2 (CanSIPSv2). Weather Forecast. 35, 1317–1343 (2020). [DOI: 10.1175/WAF-D-19-0259.1]
  54. Delworth, T. L. et al. SPEAR: the next generation GFDL modeling system for seasonal to multidecadal prediction and projection. J. Adv. Model. Earth Syst. 12, e2019MS001895 (2020). [DOI: 10.1029/2019MS001895]
  55. Molod, A. et al. GEOS‐S2S version 2: the GMAO high‐resolution coupled model and assimilation system for seasonal prediction. J. Geophys. Res. Atmos. 125, e2019JD031767 (2020). [PMID: 33959467]
  56. Infanti, J. M. & Kirtman, B. P. Prediction and predictability of land and atmosphere initialized CCSM4 climate forecasts over North America. J. Geophys. Res. Atmos. 121, 12690–12701 (2016). [DOI: 10.1002/2016JD024932]
  57. Saha, S. et al. The NCEP climate forecast system version 2. J. Clim. 27, 2185–2208 (2014). [DOI: 10.1175/JCLI-D-12-00823.1]

Word Cloud

Created with Highcharts 10.0.0forecastsMHWsmarineglobalclimateMHWheatwavesecosystemsextremeeventsbasedMarine-periodsexceptionallywarmoceantemperaturelastingweeksyears-arenowwidelyrecognizedcapacitydisruptsubstantialecologicalsocioeconomicimpactspresentsignificantchallengesresourcemanagersbenefitforewarningfacilitateproactivedecision-makingHoweverdespiteextensiveresearchphysicaldriverscomprehensiveassessmentabilitypredictuselargemultimodelensembledevelopassesscoverworld'soceansleadtimesyearUsing30yearsretrospectiveshowonsetintensitydurationoftenpredictableskilfulpossible112monthsadvancedependingregionseasonstatelarge-scalemodesElNiño/SouthernOscillationdiscussconsiderationssettingdecisionthresholdsprobabilitywilloccurempoweringstakeholderstakeappropriateactionsriskprofileresultshighlightpotentialoperationalanalogousweatherphenomenapromoteresilienceGlobalseasonal

Similar Articles

Cited By