ER Stress in COVID-19 and Parkinson's Disease: In Vitro and In Silico Evidences.

Zahara L Chaudhry, Mahmoud Gamal, Ingrid Ferhati, Mohamad Warda, Bushra Y Ahmed
Author Information
  1. Zahara L Chaudhry: Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK.
  2. Mahmoud Gamal: Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
  3. Ingrid Ferhati: Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK.
  4. Mohamad Warda: Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
  5. Bushra Y Ahmed: Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK.

Abstract

The outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signifies a serious worldwide concern to public health. Both transcriptome and proteome of SARS-CoV-2-infected cells synergize the progression of infection in host, which may exacerbate symptoms and/or progression of other chronic diseases such as Parkinson's disease (PD). Oxidative stress is a well-known cause of endoplasmic reticulum (ER) stress observed in both SARS-CoV-2 and PD. In the current study, we aimed to explore the influence of PKR-like ER kinase (PERK) stress pathway under SARS-CoV-2-mediated infection and in human cell model of PD. Furthermore, we investigated whether they are interconnected and if the ER stress inhibitors could inhibit cell death and provide cellular protection. To achieve this aim, we have incorporated in silico analysis obtained from gene set enrichment analysis (GSEA), a literature review and laboratory data. The neurotoxin, 6-hydroxy dopamine (6OHDA), was used to mimic the biochemical and neuropathological characteristics of PD by inducing oxidative stress in dopamine-containing neurons differentiated from ReNVM cell line (dDCNs). Furthermore, we explored if ER stress influences activation of caspases-2, -4 and -8 in SARS-CoV-2 and in stressed dDCNs. Our laboratory data using Western blot, immunocytochemistry and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) analyses indicated that 6OHDA-induced toxicity triggered activation of caspases-2, -4 and -8 in dDCNs. Under SARS-CoV-2 infection of different cell types, GSEA revealed cell-specific sensitivities to oxidative and ER stresses. Cardiomyocytes and type II alveolar epithelial-like cells were more vulnerable to oxidative stress than neural cells. On the other side, only cardiomyocytes activated the unfolded protein response, however, the PERK pathway was operative in both cardiomyocytes and neural cells. In addition, caspase-4 activation by a SARS-CoV-2 was observed via in silico analyses. These results demonstrate that the ER stress pathway under oxidative stress in SARS-CoV-2 and PD are interconnected using diverse pathways. Furthermore, our results using the ER stress inhibitor and caspase specific inhibitors provided cellular protection suggesting that the use of specific inhibitors can provide effective therapeutic approaches for the treatment of COVID-19 and PD.

Keywords

References

  1. J Biol Chem. 2005 Apr 15;280(15):15229-37 [PMID: 15699033]
  2. Annu Rev Pathol. 2008;3:399-425 [PMID: 18039139]
  3. Front Immunol. 2019 Jan 04;9:3083 [PMID: 30662442]
  4. Mol Neurodegener. 2010 Dec 13;5:56 [PMID: 21144044]
  5. J Biol Chem. 2004 Jun 18;279(25):25935-8 [PMID: 15070890]
  6. J Neurol. 2021 Jun;268(6):2013-2022 [PMID: 32870373]
  7. Med Mal Infect. 2020 Aug;50(5):436-439 [PMID: 32305563]
  8. Biochim Biophys Acta Mol Basis Dis. 2019 Nov 1;1865(11):165516 [PMID: 31362041]
  9. J Pharmacol Exp Ther. 2003 Aug;306(2):752-62 [PMID: 12730350]
  10. Gastroenterol Rep (Oxf). 2018 Aug;6(3):167-176 [PMID: 30151200]
  11. Exp Neurol. 2002 Jun;175(2):303-17 [PMID: 12061862]
  12. Exp Neurol. 2013 Oct;248:213-23 [PMID: 23769975]
  13. In Vivo. 2020 Jun;34(3 Suppl):1645-1650 [PMID: 32503824]
  14. Antioxid Redox Signal. 2007 Dec;9(12):2373-87 [PMID: 17883326]
  15. Toxicol In Vitro. 2005 Jun;19(4):471-9 [PMID: 15826805]
  16. Brain Sci. 2020 Oct 31;10(11): [PMID: 33142819]
  17. J Neurosci Methods. 2005 Oct 15;148(1):78-87 [PMID: 15939479]
  18. J Biomol Struct Dyn. 2021 Apr;39(7):2617-2627 [PMID: 32238078]
  19. Biochem Soc Trans. 2006 Feb;34(Pt 1):7-11 [PMID: 16246168]
  20. Cell Stem Cell. 2020 Dec 3;27(6):962-973.e7 [PMID: 32979316]
  21. Life Sci. 2020 Nov 1;260:118482 [PMID: 32971105]
  22. Nat Rev Immunol. 2020 Sep;20(9):515-516 [PMID: 32728221]
  23. Trends Mol Med. 2012 Jan;18(1):59-68 [PMID: 21889406]
  24. BMC Bioinformatics. 2004 Jun 06;5:72 [PMID: 15180906]
  25. Life Sci. 2020 Aug 15;255:117842 [PMID: 32454157]
  26. Cells. 2021 Oct 25;10(11): [PMID: 34831101]
  27. Free Radic Biol Med. 2021 Aug 20;172:688-698 [PMID: 34186206]
  28. J Neurosci. 2012 Mar 7;32(10):3306-20 [PMID: 22399753]
  29. Cell Rep. 2018 Mar 13;22(11):2827-2836 [PMID: 29539413]
  30. FEBS J. 2007 Feb;274(3):630-58 [PMID: 17288551]
  31. Cell Stem Cell. 2020 Dec 3;27(6):937-950.e9 [PMID: 33010822]
  32. Hum Mol Genet. 2005 Dec 15;14(24):3801-11 [PMID: 16239241]
  33. Eur J Pharmacol. 1995 Mar 16;292(3-4):329-32 [PMID: 7796873]
  34. BMB Rep. 2009 Nov 30;42(11):719-24 [PMID: 19944012]
  35. Annu Rev Pathol. 2006;1:151-70 [PMID: 18039111]
  36. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 [PMID: 23193258]
  37. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  38. Eur J Pharmacol. 2020 Sep 5;882:173288 [PMID: 32561291]
  39. J Neurol Neurosurg Psychiatry. 2001 Jun;70(6):739-43 [PMID: 11385006]
  40. J Biochem. 2005 May;137(5):551-5 [PMID: 15944407]
  41. Nat Genet. 2003 Jul;34(3):267-73 [PMID: 12808457]
  42. PLoS One. 2010 May 05;5(5):e10489 [PMID: 20463975]
  43. J Physiol Sci. 2020 Mar 11;70(1):16 [PMID: 32160868]
  44. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  45. J Appl Physiol (1985). 2007 Oct;103(4):1269-75 [PMID: 17673562]
  46. Acta Biochim Biophys Sin (Shanghai). 2014 Aug;46(8):629-40 [PMID: 25016584]
  47. Antioxid Redox Signal. 2007 May;9(5):553-61 [PMID: 17465880]
  48. Proc Natl Acad Sci U S A. 2015 May 26;112(21):6688-93 [PMID: 25964352]
  49. Cell Rep Med. 2020 Jul 21;1(4):100052 [PMID: 32835305]
  50. Curr Mol Med. 2008 May;8(3):157-72 [PMID: 18473817]
  51. Life Sci. 2021 Jan 15;265:118781 [PMID: 33220289]
  52. Front Neurosci. 2020 Sep 02;14:893 [PMID: 32982676]
  53. J Cell Mol Med. 2011 Oct;15(10):2025-39 [PMID: 21722302]
  54. Neuroreport. 2013 Sep 11;24(13):757-62 [PMID: 23921595]
  55. J Infect. 2020 May;80(5):554-562 [PMID: 32169481]
  56. Cells. 2021 Mar 16;10(3): [PMID: 33809527]
  57. Annu Rev Neurosci. 2005;28:57-87 [PMID: 16022590]
  58. Biochim Biophys Acta. 2013 Dec;1833(12):3460-3470 [PMID: 23850759]
  59. Database (Oxford). 2016 Jul 03;2016: [PMID: 27374120]
  60. J Immunol. 2012 Feb 15;188(4):1992-2000 [PMID: 22246630]
  61. Cell. 2020 Mar 5;180(5):941-955.e20 [PMID: 32109412]
  62. Prog Neurobiol. 2001 Oct;65(2):135-72 [PMID: 11403877]
  63. Antioxidants (Basel). 2020 Sep 21;9(9): [PMID: 32967329]
  64. Antioxidants (Basel). 2021 Feb 07;10(2): [PMID: 33562403]
  65. Biochimie. 2020 Dec;179:229-236 [PMID: 33115667]
  66. Expert Rev Mol Med. 2007 Jun 28;9(17):1-34 [PMID: 17597554]
  67. Annu Rev Pathol. 2015;10:173-94 [PMID: 25387057]
  68. Int J Mol Sci. 2021 Mar 24;22(7): [PMID: 33805011]
  69. Sci Rep. 2019 Jun 25;9(1):9245 [PMID: 31239473]

Word Cloud

Created with Highcharts 10.0.0stressERSARS-CoV-2PDoxidativecellscellCOVID-19infectionPERKpathwayFurthermoreinhibitorsdDCNsactivationusingprogressionParkinson'sdiseaseendoplasmicreticulumobservedPKR-likekinaseinterconnectedprovidecellularprotectionsilicoanalysisGSEAlaboratorydata6OHDAcaspases-2-4-8analysesneuralcardiomyocytesresultscaspasespecificoutbreakcausedsevereacuterespiratorysyndromecoronavirus2signifiesseriousworldwideconcernpublichealthtranscriptomeproteomeSARS-CoV-2-infectedsynergizehostmayexacerbatesymptomsand/orchronicdiseasesOxidativewell-knowncausecurrentstudyaimedexploreinfluenceSARS-CoV-2-mediatedhumanmodelinvestigatedwhetherinhibitdeathachieveaimincorporatedobtainedgenesetenrichmentliteraturereviewneurotoxin6-hydroxydopamineusedmimicbiochemicalneuropathologicalcharacteristicsinducingdopamine-containingneuronsdifferentiatedReNVMlineexploredinfluencesstressedWesternblotimmunocytochemistry3-45-dimethylthiazolyl-2-25-diphenyltetrazoliumbromideMTTindicated6OHDA-inducedtoxicitytriggereddifferenttypesrevealedcell-specificsensitivitiesstressesCardiomyocytestypeIIalveolarepithelial-likevulnerablesideactivatedunfoldedproteinresponsehoweveroperativeadditioncaspase-4viademonstratediversepathwaysinhibitorprovidedsuggestingusecaneffectivetherapeuticapproachestreatmentStressDisease:VitroSilicoEvidencesParkinson’s

Similar Articles

Cited By