Machine Learning for Early Parkinson's Disease Identification within SWEDD Group Using Clinical and DaTSCAN SPECT Imaging Features.

Hajer Khachnaoui, Nawres Khlifa, Rostom Mabrouk
Author Information
  1. Hajer Khachnaoui: Laboratoire de Biophysique et Technologies Médicales, Institut Superieur des Technologies Medicales de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia.
  2. Nawres Khlifa: Laboratoire de Biophysique et Technologies Médicales, Institut Superieur des Technologies Medicales de Tunis, Université de Tunis El Manar, Tunis 1006, Tunisia.
  3. Rostom Mabrouk: Department of Computer Sciences, Bishop's University, Bishop's 2600 College St., Sherbrooke, QC J1M 1Z7, Canada.

Abstract

Early Parkinson's Disease (PD) diagnosis is a critical challenge in the treatment process. Meeting this challenge allows appropriate planning for patients. However, Scan Without Evidence of Dopaminergic Deficit (SWEDD) is a heterogeneous group of PD patients and Healthy Controls (HC) in clinical and imaging features. The application of diagnostic tools based on Machine Learning (ML) comes into play here as they are capable of distinguishing between HC subjects and PD patients within an SWEDD group. In the present study, three ML algorithms were used to separate PD patients from HC within an SWEDD group. Data of 548 subjects were firstly analyzed by Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) techniques. Using the best reduction technique result, we built the following clustering models: Density-Based Spatial (DBSCAN), K-means and Hierarchical Clustering. According to our findings, LDA performs better than PCA; therefore, LDA was used as input for the clustering models. The different models' performances were assessed by comparing the clustering algorithms outcomes with the ground truth after a follow-up. Hierarchical Clustering surpassed DBSCAN and K-means algorithms by 64%, 78.13% and 38.89% in terms of accuracy, sensitivity and specificity. The proposed method demonstrated the suitability of ML models to distinguish PD patients from HC subjects within an SWEDD group.

Keywords

References

  1. Am J Med. 2019 Jul;132(7):802-807 [PMID: 30890425]
  2. Biomed Eng Online. 2016 Jan 06;15:2 [PMID: 26759159]
  3. Clin Imaging. 2013 May-Jun;37(3):420-6 [PMID: 23153689]
  4. Clin Med (Lond). 2016 Aug;16(4):371-5 [PMID: 27481384]
  5. IEEE Trans Med Imaging. 2016 May;35(5):1170-81 [PMID: 26441412]
  6. EJNMMI Phys. 2017 Nov 29;4(1):29 [PMID: 29188397]
  7. Int J Neural Syst. 2020 Sep;30(9):2050044 [PMID: 32787634]
  8. J Neurol. 2014 Nov;261(11):2204-8 [PMID: 25182701]
  9. J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):368-76 [PMID: 18344392]
  10. Neurodegener Dis. 2018;18(4):173-190 [PMID: 30089306]
  11. Ann Nucl Med. 2021 Mar;35(3):378-385 [PMID: 33471288]
  12. Neurology. 2000 Feb 8;54(3):697-702 [PMID: 10680806]
  13. J Neurosci Methods. 2021 Feb 15;350:109019 [PMID: 33321153]
  14. Front Neuroinform. 2018 Aug 14;12:53 [PMID: 30154711]
  15. J Neurol. 2019 Jul;266(7):1771-1781 [PMID: 31037416]
  16. Lancet Neurol. 2006 Jan;5(1):75-86 [PMID: 16361025]
  17. Neurology. 2014 May 20;82(20):1791-7 [PMID: 24759846]
  18. Int J Comput Assist Radiol Surg. 2021 Jan;16(1):91-101 [PMID: 33140257]
  19. J Neuroimaging. 2012 Jul;22(3):225-30 [PMID: 21410815]
  20. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6789-92 [PMID: 22255897]
  21. Parkinsonism Relat Disord. 2019 Feb;59:93-100 [PMID: 30181086]
  22. Prog Neurobiol. 2011 Dec;95(4):629-35 [PMID: 21930184]
  23. J Neurochem. 2016 Oct;139 Suppl 1:318-324 [PMID: 27401947]

Word Cloud

Created with Highcharts 10.0.0SWEDDPDpatientsgroupHCwithinalgorithmsclusteringDiseaseMachineLearningMLsubjectsLDAEarlyParkinson'schallengeimagingusedAnalysisPCAUsingDBSCANK-meansHierarchicalClusteringmodelsSPECTdiagnosiscriticaltreatmentprocessMeetingallowsappropriateplanningHoweverScanWithoutEvidenceDopaminergicDeficitheterogeneousHealthyControlsclinicalfeaturesapplicationdiagnostictoolsbasedcomesplaycapabledistinguishingpresentstudythreeseparateData548firstlyanalyzedPrincipalComponentLinearDiscriminanttechniquesbestreductiontechniqueresultbuiltfollowingmodels:Density-BasedSpatialAccordingfindingsperformsbetterthereforeinputdifferentmodels'performancesassessedcomparingoutcomesgroundtruthfollow-upsurpassed64%7813%3889%termsaccuracysensitivityspecificityproposedmethoddemonstratedsuitabilitydistinguishIdentificationGroupClinicalDaTSCANImagingFeaturesParkinson’s

Similar Articles

Cited By