CRISPR/Cas9 in Planta Hairy Root Transformation: A Powerful Platform for Functional Analysis of Root Traits in Soybean.

Mohsen Niazian, François Belzile, Davoud Torkamaneh
Author Information
  1. Mohsen Niazian: Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada. ORCID
  2. François Belzile: Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada.
  3. Davoud Torkamaneh: Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada. ORCID

Abstract

Sequence and expression data obtained by next-generation sequencing (NGS)-based forward genetics methods often allow the identification of candidate causal genes. To provide true experimental evidence of a gene's function, reverse genetics techniques are highly valuable. Site-directed mutagenesis through transfer DNA (T-DNA) delivery is an efficient reverse screen method in plant functional analysis. Precise modification of targeted crop genome sequences is possible through the stable and/or transient delivery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) reagents. Currently, CRISPR/Cas9 is the most powerful reverse genetics approach for fast and precise functional analysis of candidate genes/mutations of interest. Rapid and large-scale analyses of CRISPR/Cas-induced mutagenesis is achievable through -mediated hairy root transformation. The combination of hairy root-CRISPR/Cas provides an extraordinary platform for rapid, precise, easy, and cost-effective "in root" functional analysis of genes of interest in legume plants, including soybean. Both hairy root transformation and CRISPR/Cas9 techniques have their own complexities and considerations. Here, we discuss recent advancements in soybean hairy root transformation and CRISPR/Cas9 techniques. We highlight the critical factors required to enhance mutation induction and hairy root transformation, including the new generation of reporter genes, methods of infection, accurate gRNA design strategies, Cas9 variants, gene regulatory elements of gRNAs and Cas9 nuclease cassettes and their configuration in the final binary vector to study genes involved in root-related traits in soybean.

Keywords

References

  1. Plant Methods. 2018 Feb 23;14:17 [PMID: 29483937]
  2. Plant Biotechnol J. 2019 Oct;17(10):1865-1867 [PMID: 31070861]
  3. Front Plant Sci. 2021 Mar 09;12:638340 [PMID: 33767722]
  4. Front Plant Sci. 2020 Jun 16;11:800 [PMID: 32612620]
  5. GM Crops Food. 2015;6(4):243-52 [PMID: 26479970]
  6. Plant Physiol. 2022 Jan 20;188(1):477-489 [PMID: 34633461]
  7. Mol Genet Genomics. 2021 May;296(3):485-500 [PMID: 33751237]
  8. Plants (Basel). 2021 Nov 22;10(11): [PMID: 34834905]
  9. Curr Opin Biotechnol. 2016 Feb;37:69-75 [PMID: 26707469]
  10. Plant Biotechnol J. 2022 Feb;20(2):283-296 [PMID: 34532941]
  11. Sci Rep. 2015 May 29;5:10342 [PMID: 26022141]
  12. Curr Opin Biotechnol. 2007 Apr;18(2):148-53 [PMID: 17287115]
  13. Nat Rev Genet. 2014 May;15(5):321-34 [PMID: 24690881]
  14. J Plant Physiol. 2015 Mar 15;176:157-68 [PMID: 25617765]
  15. Planta. 2019 Apr;249(4):953-973 [PMID: 30715560]
  16. Plant Cell Physiol. 2010 Feb;51(2):201-14 [PMID: 20007291]
  17. Plant Genome. 2023 Jun;16(2):e20171 [PMID: 34904377]
  18. Trends Biotechnol. 2020 Feb;38(2):136-141 [PMID: 31526571]
  19. Prog Mol Biol Transl Sci. 2017;149:187-213 [PMID: 28712497]
  20. Trends Biotechnol. 2019 Oct;37(10):1121-1142 [PMID: 30995964]
  21. Plant J. 2006 Oct;48(2):261-73 [PMID: 17018035]
  22. Nat Rev Genet. 2015 May;16(5):299-311 [PMID: 25854182]
  23. Plant Biotechnol J. 2020 Apr 20;: [PMID: 32311214]
  24. Plant Cell Rep. 2015 Nov;34(11):1987-2000 [PMID: 26232349]
  25. Plant Cell Environ. 2020 Mar;43(3):637-648 [PMID: 31724182]
  26. Rice (N Y). 2020 Feb 3;13(1):8 [PMID: 32016614]
  27. Planta. 2021 Sep 08;254(4):68 [PMID: 34498163]
  28. Plants (Basel). 2019 Jan 10;8(1): [PMID: 30634627]
  29. Biochem Biophys Res Commun. 2019 Nov 19;519(4):819-823 [PMID: 31558318]
  30. Annu Rev Plant Biol. 2013;64:327-50 [PMID: 23451779]
  31. Brief Funct Genomics. 2018 Sep 27;17(5):319-328 [PMID: 29912293]
  32. Int J Dev Biol. 2013;57(6-8):577-86 [PMID: 24166440]
  33. Plants (Basel). 2021 Dec 24;11(1): [PMID: 35009056]
  34. J Biotechnol. 2016 Jan 10;217:90-7 [PMID: 26603121]
  35. Phys Life Rev. 2012 Sep;9(3):308-45 [PMID: 22704230]
  36. Front Plant Sci. 2021 Oct 06;12:721203 [PMID: 34691102]
  37. Methods Mol Biol. 2019;1917:217-234 [PMID: 30610639]
  38. Mol Plant. 2016 Sep 6;9(9):1337-1340 [PMID: 27235547]
  39. Nat Biotechnol. 2013 Sep;31(9):827-32 [PMID: 23873081]
  40. BMC Plant Biol. 2021 Sep 13;21(1):419 [PMID: 34517842]
  41. BMC Genomics. 2020 Oct 19;21(1):725 [PMID: 33076835]
  42. J Biotechnol. 2020 Aug 10;319:36-53 [PMID: 32446977]
  43. Front Plant Sci. 2021 Aug 25;12:728516 [PMID: 34512704]
  44. Plant Physiol. 2015 Oct;169(2):971-85 [PMID: 26297141]
  45. Mol Biotechnol. 2023 Feb;65(2):162-180 [PMID: 35119645]
  46. New Phytol. 2022 Feb;233(4):1881-1899 [PMID: 34862970]
  47. Curr Biol. 2021 Aug 23;31(16):3538-3550.e5 [PMID: 34216556]
  48. Sci Rep. 2020 Nov 19;10(1):20155 [PMID: 33214661]
  49. Nat Rev Mol Cell Biol. 2013 Jan;14(1):49-55 [PMID: 23169466]
  50. BMC Plant Biol. 2018 Dec 3;18(1):320 [PMID: 30509166]
  51. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14392-7 [PMID: 11724943]
  52. J Plant Physiol. 2021 Jun;261:153411 [PMID: 33872932]
  53. Plant Cell. 2017 Jun;29(6):1196-1217 [PMID: 28522548]
  54. Nat Rev Genet. 2006 Jul;7(7):524-36 [PMID: 16755288]
  55. Plant Commun. 2020 Nov 23;2(2):100135 [PMID: 33898975]
  56. BMC Biotechnol. 2022 Feb 15;22(1):7 [PMID: 35168613]
  57. Int J Mol Sci. 2021 Dec 16;22(24): [PMID: 34948302]
  58. Transgenic Res. 2021 Jun;30(3):239-249 [PMID: 33797713]
  59. Front Plant Sci. 2018 Jul 17;9:985 [PMID: 30065734]
  60. Mol Plant Microbe Interact. 2021 Dec;34(12):1433-1445 [PMID: 34343024]
  61. Hortic Res. 2021 Nov 1;8(1):234 [PMID: 34719678]
  62. Nucleic Acids Res. 2000 Sep 1;28(17):3361-9 [PMID: 10954606]
  63. Mol Plant. 2021 Mar 1;14(3):488-502 [PMID: 33359013]
  64. Mol Plant Pathol. 2022 Mar;23(3):417-430 [PMID: 34851539]
  65. Plant Physiol. 2016 Jan;170(1):26-32 [PMID: 26582727]
  66. Plants (Basel). 2020 Sep 11;9(9): [PMID: 32933006]
  67. aBIOTECH. 2021 Jun 25;3(2):89-98 [PMID: 36312444]
  68. Plants (Basel). 2020 Oct 14;9(10): [PMID: 33066352]
  69. New Phytol. 2017 Nov;216(3):682-698 [PMID: 28762506]
  70. Plant J. 2011 Oct;68(2):302-13 [PMID: 21707801]
  71. Plant Mol Biol. 2021 Feb;105(3):333-345 [PMID: 33155154]
  72. aBIOTECH. 2020 Jan 23;1(2):123-134 [PMID: 36304720]
  73. Front Plant Sci. 2019 Sep 18;10:1150 [PMID: 31620160]
  74. Plant Methods. 2021 Jul 10;17(1):73 [PMID: 34246291]
  75. Methods Mol Biol. 2021;2200:121-146 [PMID: 33175375]
  76. BMC Biotechnol. 2015 Mar 12;15:16 [PMID: 25879861]
  77. Chemosphere. 2022 Jan;286(Pt 1):131633 [PMID: 34325267]
  78. New Phytol. 2021 Mar;229(6):3377-3392 [PMID: 33245793]
  79. Nat Protoc. 2013 Nov;8(11):2281-2308 [PMID: 24157548]
  80. Future Sci OA. 2019 Feb 08;5(3):FSO364 [PMID: 30906565]
  81. Biology (Basel). 2021 Dec 20;10(12): [PMID: 34943269]
  82. PLoS One. 2015 Aug 18;10(8):e0136064 [PMID: 26284791]
  83. Nat Protoc. 2007;2(4):948-52 [PMID: 17446894]
  84. Trends Plant Sci. 2021 Nov;26(11):1133-1152 [PMID: 34340931]
  85. Environ Microbiol. 2017 Apr;19(4):1391-1406 [PMID: 27871141]
  86. Mol Plant. 2011 May;4(3):537-45 [PMID: 21324970]
  87. Nat Methods. 2009 May;6(5):343-5 [PMID: 19363495]
  88. PLoS One. 2011;6(7):e21622 [PMID: 21750718]
  89. Methods Cell Biol. 2008;85:153-77 [PMID: 18155463]
  90. Front Plant Sci. 2017 Sep 07;8:1548 [PMID: 28936222]

Grants

  1. 6548/Genome Canada

Word Cloud

Created with Highcharts 10.0.0hairytransformationgeneticsgenesreversefunctionalanalysisCRISPR/Cas9roottechniquessoybeanmethodscandidatemutagenesisdeliverytargetedpreciseinterestincludingmutationCas9RootSequenceexpressiondataobtainednext-generationsequencingNGS-basedforwardoftenallowidentificationcausalprovidetrueexperimentalevidencegene'sfunctionhighlyvaluableSite-directedtransferDNAT-DNAefficientscreenmethodplantPrecisemodificationcropgenomesequencespossiblestableand/ortransientclusteredregularlyinterspacedshortpalindromicrepeatCRISPR/CRISPR-associatedproteinCRISPR/CasreagentsCurrentlypowerfulapproachfastgenes/mutationsRapidlarge-scaleanalysesCRISPR/Cas-inducedachievable-mediatedcombinationroot-CRISPR/Casprovidesextraordinaryplatformrapideasycost-effective"inroot"legumeplantscomplexitiesconsiderationsdiscussrecentadvancementshighlightcriticalfactorsrequiredenhanceinductionnewgenerationreporterinfectionaccurategRNAdesignstrategiesvariantsgeneregulatoryelementsgRNAsnucleasecassettesconfigurationfinalbinaryvectorstudyinvolvedroot-relatedtraitsPlantaHairyTransformation:PowerfulPlatformFunctionalAnalysisTraitsSoybeannodulation

Similar Articles

Cited By