Superstructure Detection in Nucleosome Distribution Shows Common Pattern within a Chromosome and within the Genome.

Sujeet Kumar Mishra, Kunhe Li, Simon Brauburger, Arnab Bhattacherjee, Nestor Norio Oiwa, Dieter W Heermann
Author Information
  1. Sujeet Kumar Mishra: Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany. ORCID
  2. Kunhe Li: Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany.
  3. Simon Brauburger: Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany.
  4. Arnab Bhattacherjee: School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India. ORCID
  5. Nestor Norio Oiwa: Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany.
  6. Dieter W Heermann: Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany. ORCID

Abstract

Nucleosome positioning plays an important role in crucial biological processes such as replication, transcription, and gene regulation. It has been widely used to predict the genome's function and chromatin organisation. So far, the studies of patterns in nucleosome positioning have been limited to transcription start sites, CTCFs binding sites, and some promoter and loci regions. The genome-wide organisational pattern remains unknown. We have developed a theoretical model to coarse-grain nucleosome positioning data in order to obtain patterns in their distribution. Using hierarchical clustering on the auto-correlation function of this coarse-grained nucleosome positioning data, a genome-wide clustering is obtained for . The clustering shows the existence beyond hetero- and eu-chromatin inside the chromosomes. These non-trivial clusterings correspond to different nucleosome distributions and gene densities governing differential gene expression patterns. Moreover, these distribution patterns inside the chromosome appeared to be conserved throughout the genome and within species. The pipeline of the coarse grain nucleosome positioning sequence to identify underlying genomic organisation used in our study is novel, and the classifications obtained are unique and consistent.

Keywords

References

  1. EMBO J. 2012 Nov 28;31(23):4375-87 [PMID: 22990236]
  2. Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6427-E6436 [PMID: 27698124]
  3. Sci Rep. 2020 Jan 21;10(1):877 [PMID: 31965016]
  4. Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8872-7 [PMID: 18583476]
  5. Nat Genet. 2020 Jan;52(1):8-16 [PMID: 31925403]
  6. Sci Adv. 2019 Apr 10;5(4):eaaw1668 [PMID: 30989119]
  7. Biophys J. 1986 Jan;49(1):233-48 [PMID: 3955173]
  8. J Mol Biol. 1987 Jul 20;196(2):261-82 [PMID: 3656447]
  9. Nat Commun. 2016 May 06;7:11485 [PMID: 27151365]
  10. Biophys J. 2010 Sep 8;99(5):1358-67 [PMID: 20816047]
  11. Biophys J. 2010 Nov 3;99(9):2995-3001 [PMID: 21044597]
  12. Biol Proced Online. 2019 Apr 24;21:7 [PMID: 31049033]
  13. Nat Rev Mol Cell Biol. 2021 Aug;22(8):511-528 [PMID: 33953379]
  14. J Mol Biol. 1985 Dec 20;186(4):773-90 [PMID: 3912515]
  15. FEMS Yeast Res. 2016 Jun;16(4): [PMID: 27189369]
  16. Mol Microbiol. 2014 Jul;93(2):291-305 [PMID: 24889932]
  17. Nat Struct Mol Biol. 2013 Mar;20(3):267-73 [PMID: 23463311]
  18. Nat Commun. 2021 Mar 1;12(1):1360 [PMID: 33649325]
  19. Chem Rev. 2016 Jul 27;116(14):7898-936 [PMID: 27333362]
  20. Bioinformatics. 2013 Oct 1;29(19):2380-6 [PMID: 23846748]
  21. PLoS Comput Biol. 2021 Jan 11;17(1):e1008560 [PMID: 33428627]
  22. mBio. 2019 Jul 23;10(4): [PMID: 31337722]
  23. Mol Cell. 2018 Jan 4;69(1):5-7 [PMID: 29304334]
  24. J Mol Biol. 2009 Mar 13;386(5):1411-22 [PMID: 19070622]
  25. Chromosome Res. 2020 Mar;28(1):69-85 [PMID: 31776829]
  26. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897-901 [PMID: 1064861]
  27. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15635-40 [PMID: 17893337]
  28. Bioinformatics. 2011 Aug 1;27(15):2149-50 [PMID: 21653521]
  29. Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17307-17315 [PMID: 31416914]
  30. J Vis Exp. 2010 May 06;(39): [PMID: 20461051]
  31. J Biol Chem. 2003 May 16;278(20):17918-26 [PMID: 12637580]
  32. Genome Res. 2013 Feb;23(2):341-51 [PMID: 23193179]
  33. J Mol Biol. 2021 Mar 19;433(6):166847 [PMID: 33539878]
  34. Nat Genet. 2019 Aug;51(8):1272-1282 [PMID: 31308546]
  35. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  36. EMBO J. 2011 Apr 6;30(7):1277-88 [PMID: 21343911]
  37. Nucleic Acids Res. 2017 Jan 4;45(D1):D592-D596 [PMID: 27738138]
  38. Nucleic Acids Res. 2014 Jan;42(1):128-36 [PMID: 24068556]
  39. Nature. 2012 Apr 11;485(7398):381-5 [PMID: 22495304]
  40. Sci Rep. 2017 Feb 08;7:41947 [PMID: 28176797]
  41. Nucleic Acids Res. 2019 Jan 8;47(D1):D163-D169 [PMID: 30335176]
  42. Phys Biol. 2022 Apr 06;19(3): [PMID: 35290214]
  43. Nat Commun. 2014 Sep 18;5:4909 [PMID: 25233085]
  44. Science. 2002 Feb 15;295(5558):1306-11 [PMID: 11847345]

Grants

  1. INST 35/1314-1 FUGG and INST 35/1503-1 FUGG/Deutsche Forschungsgemeinschaft

Word Cloud

Created with Highcharts 10.0.0nucleosomepositioningpatternsgenedistributionclusteringwithinNucleosometranscriptionusedfunctionchromatinorganisationsitesgenome-widedataobtainedinsideplaysimportantrolecrucialbiologicalprocessesreplicationregulationwidelypredictgenome'sfarstudieslimitedstartCTCFsbindingpromoterlociregionsorganisationalpatternremainsunknowndevelopedtheoreticalmodelcoarse-grainorderobtainUsinghierarchicalauto-correlationcoarse-grainedshowsexistencebeyondhetero-eu-chromatinchromosomesnon-trivialclusteringscorresponddifferentdistributionsdensitiesgoverningdifferentialexpressionMoreoverchromosomeappearedconservedthroughoutgenomespeciespipelinecoarsegrainsequenceidentifyunderlyinggenomicstudynovelclassificationsuniqueconsistentSuperstructureDetectionDistributionShowsCommonPatternChromosomeGenomeeuchromatinheterochromatinstructureclassification

Similar Articles

Cited By