Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models.

Babak Saravi, Frank Hassel, Sara Ülkümen, Alisia Zink, Veronika Shavlokhova, Sebastien Couillard-Despres, Martin Boeker, Peter Obid, Gernot Michael Lang
Author Information
  1. Babak Saravi: Department of Orthopedics and Trauma Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany. ORCID
  2. Frank Hassel: Department of Spine Surgery, Loretto Hospital, 79100 Freiburg, Germany.
  3. Sara Ülkümen: Department of Orthopedics and Trauma Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany.
  4. Alisia Zink: Department of Spine Surgery, Loretto Hospital, 79100 Freiburg, Germany.
  5. Veronika Shavlokhova: Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany.
  6. Sebastien Couillard-Despres: Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria. ORCID
  7. Martin Boeker: Intelligence and Informatics in Medicine, Medical Center Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany. ORCID
  8. Peter Obid: Department of Orthopedics and Trauma Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany.
  9. Gernot Michael Lang: Department of Orthopedics and Trauma Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany. ORCID

Abstract

Healthcare systems worldwide generate vast amounts of data from many different sources. Although of high complexity for a human being, it is essential to determine the patterns and minor variations in the genomic, radiological, laboratory, or clinical data that reliably differentiate phenotypes or allow high predictive accuracy in health-related tasks. Convolutional neural networks (CNN) are increasingly applied to image data for various tasks. Its use for non-imaging data becomes feasible through different modern machine learning techniques, converting non-imaging data into images before inputting them into the CNN model. Considering also that healthcare providers do not solely use one data modality for their decisions, this approach opens the door for multi-input/mixed data models which use a combination of patient information, such as genomic, radiological, and clinical data, to train a hybrid deep learning model. Thus, this reflects the main characteristic of artificial intelligence: simulating natural human behavior. The present review focuses on key advances in machine and deep learning, allowing for multi-perspective pattern recognition across the entire information set of patients in spine surgery. This is the first review of artificial intelligence focusing on hybrid models for deep learning applications in spine surgery, to the best of our knowledge. This is especially interesting as future tools are unlikely to use solely one data modality. The techniques discussed could become important in establishing a new approach to decision-making in spine surgery based on three fundamental pillars: (1) patient-specific, (2) artificial intelligence-driven, (3) integrating multimodal data. The findings reveal promising research that already took place to develop multi-input mixed-data hybrid decision-supporting models. Their implementation in spine surgery may hence be only a matter of time.

Keywords

References

  1. Neurospine. 2019 Dec;16(4):669-677 [PMID: 31905455]
  2. Comput Struct Biotechnol J. 2020 Jun 17;18:1466-1473 [PMID: 32637044]
  3. Global Spine J. 2022 Jun;12(5):894-908 [PMID: 33207969]
  4. Int J Health Plann Manage. 2022 May;37(3):1708-1721 [PMID: 35170106]
  5. Clin Spine Surg. 2016 Dec;29(10):427-429 [PMID: 27879504]
  6. Bioengineered. 2014 Mar-Apr;5(2):80-95 [PMID: 24335433]
  7. Stud Health Technol Inform. 2004;107(Pt 2):829-33 [PMID: 15360928]
  8. J Neurosurg Spine. 2019 Jun 7;:1-11 [PMID: 31174185]
  9. Int J Spine Surg. 2020 Dec;14(s3):S75-S85 [PMID: 33208388]
  10. J Bone Joint Surg Am. 2016 May 18;98(10):824-34 [PMID: 27194492]
  11. Spine J. 2021 Oct;21(10):1635-1642 [PMID: 32294557]
  12. BMC Musculoskelet Disord. 2014 Oct 01;15:325 [PMID: 25273991]
  13. Neurosurg Focus. 2021 May;50(5):E5 [PMID: 33932935]
  14. Spine (Phila Pa 1976). 2018 Aug 1;43(15):1058-1066 [PMID: 29215501]
  15. Spine Deform. 2018 Nov - Dec;6(6):762-770 [PMID: 30348356]
  16. J Biomed Inform. 2002 Oct-Dec;35(5-6):352-9 [PMID: 12968784]
  17. Nat Methods. 2014 Apr;11(4):385-92 [PMID: 24562424]
  18. Neurosurg Focus. 2020 May 1;48(5):E2 [PMID: 32357320]
  19. Spine (Phila Pa 1976). 2021 May 1;46(9):579-587 [PMID: 33821816]
  20. Sci Rep. 2019 Aug 6;9(1):11399 [PMID: 31388036]
  21. SAGE Open Med. 2020 Jun 25;8:2050312120934839 [PMID: 32637104]
  22. J Am Coll Radiol. 2007 Sep;4(9):617-21 [PMID: 17845967]
  23. Pain. 2019 Jun;160(6):1361-1373 [PMID: 30747904]
  24. Eur Spine J. 2019 Jun;28(6):1433-1440 [PMID: 30941521]
  25. Nat Commun. 2020 Sep 1;11(1):4391 [PMID: 32873806]
  26. Osteoporos Int. 2021 Mar;32(3):437-449 [PMID: 33415373]
  27. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  28. Exp Dermatol. 2018 Nov;27(11):1261-1267 [PMID: 30187575]
  29. Asian Spine J. 2018 Aug;12(4):611-621 [PMID: 30060368]
  30. PLoS One. 2013;8(3):e57410 [PMID: 23516406]
  31. Sci Rep. 2019 Jan 31;9(1):1103 [PMID: 30705340]
  32. Spine J. 2021 Oct;21(10):1679-1686 [PMID: 33798728]
  33. J Neurosurg Spine. 2019 Jul 26;:1-6 [PMID: 31349223]
  34. J Digit Imaging. 2009 Aug;22(4):357-62 [PMID: 18459002]
  35. Healthc Inform Res. 2018 Jan;24(1):29-37 [PMID: 29503750]
  36. Ann Transl Med. 2020 Mar;8(6):299 [PMID: 32355743]
  37. Spine J. 2019 Nov;19(11):1772-1781 [PMID: 31229662]
  38. J Arthroplasty. 2019 Oct;34(10):2272-2277.e1 [PMID: 31327647]
  39. NPJ Digit Med. 2020 Oct 16;3:136 [PMID: 33083571]
  40. J Pers Med. 2021 Dec 16;11(12): [PMID: 34945849]
  41. Front Public Health. 2017 Sep 21;5:230 [PMID: 28983476]
  42. NPJ Digit Med. 2020 Mar 26;3:47 [PMID: 32258429]
  43. PLoS One. 2015 Apr 14;10(4):e0121595 [PMID: 25876027]
  44. Eur Spine J. 2021 Aug;30(8):2167-2175 [PMID: 34100112]
  45. Eur Spine J. 2022 Feb 21;: [PMID: 35188587]
  46. NPJ Digit Med. 2021 Sep 7;4(1):132 [PMID: 34493770]
  47. Brainlesion. 2019;11383:92-104 [PMID: 31231720]
  48. Spine (Phila Pa 1976). 2007 Feb 1;32(3):382-7 [PMID: 17268274]
  49. Stud Health Technol Inform. 2016;224:181-3 [PMID: 27225576]
  50. Global Spine J. 2021 May 26;:21925682211019361 [PMID: 34036817]
  51. Br J Anaesth. 2017 Jul 01;119(1):95-105 [PMID: 28974065]
  52. Cells. 2021 Mar 15;10(3): [PMID: 33804069]
  53. J Neurosurg Spine. 2018 Dec 7;30(3):344-352 [PMID: 30544346]
  54. Spine J. 2019 Nov;19(11):1764-1771 [PMID: 31185292]
  55. Arch Phys Med Rehabil. 2021 Jul;102(7):1324-1330.e3 [PMID: 33711278]
  56. Neurosurg Focus. 2015 Dec;39(6):E13 [PMID: 26621411]
  57. World Neurosurg. 2021 Jul;151:e19-e27 [PMID: 33744425]
  58. Spine J. 2021 Oct;21(10):1659-1669 [PMID: 32045708]
  59. Life (Basel). 2021 Nov 22;11(11): [PMID: 34833156]
  60. Neurosurgery. 2019 Jul 1;85(1):E83-E91 [PMID: 30476188]
  61. J Clin Neurosci. 2015 Sep;22(9):1444-9 [PMID: 26115898]
  62. JAMA Surg. 2018 Jul 1;153(7):634-642 [PMID: 29516096]
  63. Skin Res Technol. 2018 May;24(2):256-264 [PMID: 29057507]
  64. NPJ Digit Med. 2020 Sep 14;3:119 [PMID: 33015372]
  65. J Orthop Surg Res. 2021 May 21;16(1):332 [PMID: 34020677]
  66. Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979 [PMID: 29531073]
  67. JAMA Intern Med. 2019 Mar 1;179(3):293-294 [PMID: 30556825]
  68. J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1120-7 [PMID: 23645553]
  69. J Orthop Res. 2021 Aug;39(8):1732-1744 [PMID: 32816312]
  70. Spine J. 2019 Oct;19(10):1657-1665 [PMID: 31059819]
  71. Neurosurg Focus. 2019 May 1;46(5):E5 [PMID: 31042660]
  72. Spine J. 2019 Dec;19(12):1950-1959 [PMID: 31255788]
  73. Spine (Phila Pa 1976). 2018 Jun 15;43(12):853-860 [PMID: 29016439]
  74. Neuroimage. 2019 Apr 1;189:276-287 [PMID: 30654174]
  75. Spine J. 2022 Jul;22(7):1119-1130 [PMID: 35202784]
  76. Neurosurg Focus. 2017 Dec;43(6):E2 [PMID: 29191094]
  77. Front Surg. 2020 Aug 21;7:54 [PMID: 32974382]
  78. J Clin Med. 2021 Nov 16;10(22): [PMID: 34830608]
  79. Medicina (Kaunas). 2021 Apr 19;57(4): [PMID: 33921597]
  80. Spine J. 2020 Mar;20(3):329-336 [PMID: 31654809]
  81. Spine (Phila Pa 1976). 2016 Oct 1;41(19):1535-1541 [PMID: 27010996]
  82. IEEE Trans Med Imaging. 2021 Feb;40(2):712-721 [PMID: 33141663]
  83. Global Spine J. 2022 Jun;12(5):866-876 [PMID: 33203255]
  84. Spine J. 2014 Jul 1;14(7):1247-55 [PMID: 24211097]
  85. Br J Radiol. 2000 Oct;73(874):1052-5 [PMID: 11271897]
  86. Global Spine J. 2022 Feb 8;:21925682211053593 [PMID: 35132907]
  87. J Am Acad Orthop Surg. 2021 Sep 1;29(17):758-766 [PMID: 33428349]
  88. J Neurosurg Spine. 2019 Aug 1;31(2):155-164 [PMID: 31370009]
  89. PLoS One. 2019 Apr 4;14(4):e0215133 [PMID: 30947300]
  90. Eur Radiol. 2018 Aug;28(8):3268-3275 [PMID: 29476219]
  91. Eur Spine J. 2019 Aug;28(8):1775-1782 [PMID: 30919114]
  92. Spine J. 2021 Oct;21(10):1670-1678 [PMID: 33545371]
  93. Eur Spine J. 2021 Aug;30(8):2176-2184 [PMID: 33048249]
  94. PLoS One. 2012;7(5):e37245 [PMID: 22606353]
  95. J Neurosurg Spine. 2019 Nov 29;:1-8 [PMID: 31783353]
  96. Neurosurgery. 2021 Feb 16;88(3):584-591 [PMID: 33289519]
  97. Neurospine. 2018 Dec;15(4):329-337 [PMID: 30554505]
  98. Spine J. 2022 Feb;22(2):272-277 [PMID: 34407468]
  99. Transl Cancer Res. 2020 Dec;9(12):7682-7684 [PMID: 35117369]
  100. J Clin Med. 2021 Sep 09;10(18): [PMID: 34575182]
  101. Spine J. 2020 Aug;20(8):1184-1195 [PMID: 32445803]
  102. Eur Spine J. 2021 Aug 15;: [PMID: 34392418]
  103. Front Public Health. 2021 Dec 10;9:812023 [PMID: 34957041]
  104. JAMA. 2018 Sep 18;320(11):1107-1108 [PMID: 30178025]
  105. Neurosurg Focus. 2018 Nov 1;45(5):E6 [PMID: 30453463]
  106. Spine (Phila Pa 1976). 2021 Dec 15;46(24):1683-1689 [PMID: 34027925]
  107. Infect Dis Poverty. 2020 Jan 20;9(1):8 [PMID: 31959234]
  108. Clin Nucl Med. 2019 Dec;44(12):956-960 [PMID: 31689276]
  109. Ann Transl Med. 2021 Dec;9(23):1716 [PMID: 35071410]
  110. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1384-1387 [PMID: 33018247]
  111. J Big Data. 2021;8(1):53 [PMID: 33816053]
  112. Curr Med Imaging. 2021;17(9):1059-1077 [PMID: 33504314]
  113. Spine J. 2019 Jun;19(6):976-983 [PMID: 30710731]
  114. Bone Joint J. 2015 Jul;97-B(7):871-4 [PMID: 26130338]
  115. BMC Musculoskelet Disord. 2021 Sep 25;22(1):825 [PMID: 34563170]
  116. PLoS Comput Biol. 2018 Sep 14;14(9):e1006376 [PMID: 30216352]
  117. Neurosurgery. 2019 Oct 1;85(4):E671-E681 [PMID: 30869143]
  118. Pac Symp Biocomput. 2020;25:355-366 [PMID: 31797610]
  119. J Neurosurg Spine. 2021 May 21;:1-10 [PMID: 34020414]
  120. Spine J. 2019 May;19(5):853-861 [PMID: 30453080]
  121. Spine J. 2018 Dec;18(12):2187-2194 [PMID: 29709551]

Word Cloud

Created with Highcharts 10.0.0datalearningdeepspineusehybridartificialsurgerynetworksmachinemodelsdifferenthighhumangenomicradiologicalclinicaltasksneuralCNNnon-imagingtechniquesmodelhealthcaresolelyonemodalityapproachinformationreviewintelligencemulti-inputHealthcaresystemsworldwidegeneratevastamountsmanysourcesAlthoughcomplexityessentialdeterminepatternsminorvariationslaboratoryreliablydifferentiatephenotypesallowpredictiveaccuracyhealth-relatedConvolutionalincreasinglyappliedimagevariousbecomesfeasiblemodernconvertingimagesinputtingConsideringalsoprovidersdecisionsopensdoormulti-input/mixedcombinationpatienttrainThusreflectsmaincharacteristicintelligence:simulatingnaturalbehaviorpresentfocuseskeyadvancesallowingmulti-perspectivepatternrecognitionacrossentiresetpatientsfirstfocusingapplicationsbestknowledgeespeciallyinterestingfuturetoolsunlikelydiscussedbecomeimportantestablishingnewdecision-makingbasedthreefundamentalpillars:1patient-specific2intelligence-driven3integratingmultimodalfindingsrevealpromisingresearchalreadytookplacedevelopmixed-datadecision-supportingimplementationmayhencemattertimeArtificialIntelligence-DrivenPredictionModelingDecisionMakingSpineSurgeryUsingHybridMachineLearningModelsdegenerationmixedprediction

Similar Articles

Cited By