Physiologically Based Pharmacokinetic Modeling Approaches for Patients With SARS-CoV-2 Infection: A Case Study With Imatinib.

Jeffry Adiwidjaja, Josephine A Adattini, Alan V Boddy, Andrew J McLachlan
Author Information
  1. Jeffry Adiwidjaja: Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia. ORCID
  2. Josephine A Adattini: Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia. ORCID
  3. Alan V Boddy: UniSA Cancer Research Institute and UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia. ORCID
  4. Andrew J McLachlan: Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia. ORCID

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), manifests as mild respiratory symptoms to severe respiratory failure and is associated with inflammation and other physiological changes. Of note, substantial increases in plasma concentrations of α -acid-glycoprotein and interleukin-6 have been observed among patients admitted to the hospital with advanced SARS-CoV-2 infection. A physiologically based pharmacokinetic (PBPK) approach is a useful tool to evaluate and predict disease-related changes on drug pharmacokinetics. A PBPK model of Imatinib has previously been developed and verified in healthy people and patients with cancer. In this study, the PBPK model of Imatinib was successfully extrapolated to patients with SARS-CoV-2 infection by accounting for disease-related changes in plasma α -acid-glycoprotein concentrations and the potential drug interaction between Imatinib and dexamethasone. The model demonstrated a good predictive performance in describing total and unbound Imatinib concentrations in patients with SARS-CoV-2 infection. PBPK simulations highlight that an equivalent dose of Imatinib may lead to substantially higher total drug concentrations in patients with SARS-CoV-2 infection compared to that in patients with cancer, while the unbound concentrations remain comparable between the 2 patient populations. This supports the notion that unbound trough concentration is a better exposure metric for dose adjustment of Imatinib in patients with SARS-CoV-2 infection, compared to the corresponding total drug concentration. Potential strategies for refinement and generalization of the PBPK modeling approach in the patient population with SARS-CoV-2 are also provided in this article, which could be used to guide study design and inform dose adjustment in the future.

Keywords

References

  1. J Antimicrob Chemother. 2022 Feb 23;77(3):568-573 [PMID: 34791318]
  2. Clin Pharmacokinet. 2010 Mar;49(3):189-206 [PMID: 20170207]
  3. Clin Pharmacol Ther. 2018 May;103(5):854-867 [PMID: 28990182]
  4. J Med Virol. 2020 Oct;92(10):2152-2158 [PMID: 32406952]
  5. J Med Virol. 2021 Jun;93(6):3915-3924 [PMID: 33155686]
  6. Br J Clin Pharmacol. 2013 Apr;75(4):1007-18 [PMID: 22891806]
  7. Br J Clin Pharmacol. 2014 Jul;78(1):78-83 [PMID: 24400953]
  8. Pharmacotherapy. 2004 Nov;24(11):1508-14 [PMID: 15537555]
  9. Curr Clin Pharmacol. 2008 Sep;3(3):198-203 [PMID: 18781906]
  10. Br J Clin Pharmacol. 2022 Feb;88(4):1735-1750 [PMID: 34535920]
  11. N Engl J Med. 2021 Feb 25;384(8):693-704 [PMID: 32678530]
  12. JAMA. 2020 Aug 25;324(8):782-793 [PMID: 32648899]
  13. Clin Pharmacol Ther. 2021 Nov;110(5):1358-1367 [PMID: 34473836]
  14. Biomark Med. 2020 Jul;14(10):827-837 [PMID: 32490680]
  15. Clin Pharmacol Ther. 2021 Apr;109(4):1030-1033 [PMID: 33547636]
  16. Clin Pharmacol Ther. 2013 Aug;94(2):260-8 [PMID: 23588308]
  17. Lancet. 2020 Jul 25;396(10246):277-287 [PMID: 32711803]
  18. Clin Pharmacol Ther. 2019 Jul;106(1):164-173 [PMID: 30924921]
  19. Lancet Respir Med. 2021 Sep;9(9):957-968 [PMID: 34147142]
  20. Clin Cancer Res. 2007 Dec 15;13(24):7394-400 [PMID: 18094422]
  21. Clin Pharmacol Ther. 2013 Sep;94(3):383-93 [PMID: 23657159]
  22. J Clin Pharmacol. 2004 Feb;44(2):158-62 [PMID: 14747424]
  23. CPT Pharmacometrics Syst Pharmacol. 2021 May;10(5):420-427 [PMID: 33793084]
  24. Clin Immunol. 2021 Mar;224:108651 [PMID: 33333255]
  25. Nat Rev Nephrol. 2021 Nov;17(11):751-764 [PMID: 34226718]
  26. Nat Commun. 2020 Sep 28;11(1):4883 [PMID: 32985528]
  27. Cureus. 2018 Apr 24;10(4):e2529 [PMID: 29942731]
  28. Clin Pharmacokinet. 2011 Dec 1;50(12):809-22 [PMID: 22087867]
  29. Biopharm Drug Dispos. 2016 Apr;37(3):123-41 [PMID: 26531057]
  30. Clin Pharmacokinet. 2017 Mar;56(3):305-310 [PMID: 27461250]
  31. Clin Pharmacol Ther. 2015 Jul;98(1):76-86 [PMID: 25808023]
  32. Br J Clin Pharmacol. 2006 Jul;62(1):97-112 [PMID: 16842382]
  33. Clin Pharmacol Ther. 2022 Mar;111(3):579-584 [PMID: 34496043]
  34. J Intern Med. 2021 Jun;289(6):861-872 [PMID: 33411411]
  35. J Pharmacol Exp Ther. 2005 Jan;312(1):144-52 [PMID: 15365089]
  36. Hepatology. 2020 Sep;72(3):807-817 [PMID: 32473607]
  37. Expert Rev Clin Pharmacol. 2011 Mar;4(2):261-74 [PMID: 22115405]
  38. Drug Metab Dispos. 2018 Jul;46(7):943-952 [PMID: 29695616]
  39. Eur J Pharm Sci. 2020 Jul 1;150:105355 [PMID: 32438273]
  40. Biopharm Drug Dispos. 2013 Apr;34(3):141-54 [PMID: 23225350]
  41. Pharm Res. 2018 Oct 22;35(12):242 [PMID: 30349948]
  42. CPT Pharmacometrics Syst Pharmacol. 2021 Dec;10(12):1497-1511 [PMID: 34608769]
  43. Front Pharmacol. 2020 Jan 30;10:1672 [PMID: 32082165]
  44. J Antimicrob Chemother. 2021 Jun 18;76(7):1865-1873 [PMID: 33864090]
  45. Eur J Pharm Sci. 2010 Mar 18;39(5):298-309 [PMID: 20025966]
  46. Br J Cancer. 2010 Mar 30;102(7):1198-9 [PMID: 20179709]
  47. J Allergy Clin Immunol. 2020 Jul;146(1):128-136.e4 [PMID: 32425269]
  48. Biochem Pharmacol. 1997 Sep 1;54(5):605-11 [PMID: 9337077]
  49. Clin J Oncol Nurs. 2017 Oct 1;21(5 Suppl):19-36 [PMID: 28945732]
  50. Drug Metab Dispos. 2022 May;50(5):694-703 [PMID: 34348940]
  51. Br J Cancer. 2008 May 20;98(10):1633-40 [PMID: 18475296]
  52. J Med Virol. 2020 Nov;92(11):2283-2285 [PMID: 32343429]
  53. J Am Soc Nephrol. 2020 Sep;31(9):2145-2157 [PMID: 32669322]
  54. Drug Metab Dispos. 2021 Aug;49(8):610-618 [PMID: 34045218]
  55. Clin Pharmacol Ther. 2020 Nov;108(5):976-984 [PMID: 32531808]
  56. Clin Pharmacol Ther. 2021 Aug;110(2):297-310 [PMID: 33270249]
  57. Toxins (Basel). 2021 Aug 09;13(8): [PMID: 34437422]
  58. Clin Cancer Res. 2006 Oct 15;12(20 Pt 1):6073-8 [PMID: 17062683]
  59. Eur J Heart Fail. 2020 Dec;22(12):2228-2237 [PMID: 33200458]
  60. Am J Infect Control. 2021 Feb;49(2):238-246 [PMID: 32659414]
  61. Kidney Int. 2020 Jul;98(1):209-218 [PMID: 32416116]
  62. Drug Metab Dispos. 2013 Jan;41(1):50-9 [PMID: 23028140]
  63. Biopharm Drug Dispos. 2021 Apr;42(4):107-117 [PMID: 33325034]
  64. Egypt Liver J. 2021;11(1):11 [PMID: 34777865]
  65. Clin Pharmacokinet. 2022 Feb;61(2):281-293 [PMID: 34458976]
  66. Cancer Chemother Pharmacol. 2014 Dec;74(6):1307-19 [PMID: 25297989]
  67. Nat Rev Gastroenterol Hepatol. 2021 May;18(5):348-364 [PMID: 33692570]
  68. Clin Pharmacol Ther. 2021 Apr;109(4):1116-1124 [PMID: 33501997]
  69. Cancer. 2015 Nov 1;121(21):3894-904 [PMID: 26217876]
  70. Crit Care. 2021 Jun 21;25(1):214 [PMID: 34154635]
  71. Biosci Rep. 2020 Aug 28;40(8): [PMID: 32725148]
  72. Adv Drug Deliv Rev. 2018 Oct;135:85-96 [PMID: 30189273]
  73. JAMA. 2021 Aug 10;326(6):499-518 [PMID: 34228774]
  74. Biochem Biophys Res Commun. 2008 Oct 24;375(3):308-14 [PMID: 18692485]

MeSH Term

Glycoproteins
Humans
Imatinib Mesylate
Models, Biological
SARS-CoV-2
COVID-19 Drug Treatment

Chemicals

Glycoproteins
Imatinib Mesylate

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2patientsimatinibinfectionconcentrationsPBPKdrugrespiratorychangesmodeltotalunbounddosecoronavirus2plasmaα-acid-glycoproteinphysiologicallybasedpharmacokineticapproachdisease-relatedcancerstudycomparedpatientconcentrationadjustmentSevereacutesyndromecausesdisease2019COVID-19manifestsmildsymptomsseverefailureassociatedinflammationphysiologicalnotesubstantialincreasesinterleukin-6observedamongadmittedhospitaladvancedusefultoolevaluatepredictpharmacokineticspreviouslydevelopedverifiedhealthypeoplesuccessfullyextrapolatedaccountingpotentialinteractiondexamethasonedemonstratedgoodpredictiveperformancedescribingsimulationshighlightequivalentmayleadsubstantiallyhigherremaincomparablepopulationssupportsnotiontroughbetterexposuremetriccorrespondingPotentialstrategiesrefinementgeneralizationmodelingpopulationalsoprovidedarticleusedguidedesigninformfuturePhysiologicallyBasedPharmacokineticModelingApproachesPatientsInfection:CaseStudyImatinibsimulation

Similar Articles

Cited By (2)