A Network Pharmacology Approach for Uncovering the Antitumor Effects and Potential Mechanisms of the Sijunzi Decoction for the Treatment of Gastric Cancer.

Pengpeng Ding, Yutong Guo, Canghai Wang, Jianhong Chen, Chunmei Guo, Hong Liu, Qi Shi
Author Information
  1. Pengpeng Ding: Department of Gastroenterology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China. ORCID
  2. Yutong Guo: Ophthalmoptometry Class, Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu 210000, China. ORCID
  3. Canghai Wang: Department of Gastroenterology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China. ORCID
  4. Jianhong Chen: Department of Gastroenterology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China. ORCID
  5. Chunmei Guo: Department of Gastroenterology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China. ORCID
  6. Hong Liu: Department of Gastroenterology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China. ORCID
  7. Qi Shi: Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China. ORCID

Abstract

Background: Sijunzi decoction (SJZD), a classic Chinese formula, has been clinically used for the treatment of gastrointestinal disorders. However, few studies have uncovered its antitumor effects and its potential mechanisms against gastric cancer (GC). Therefore, this work aimed to identify the active compounds and putative targets of the SJZD and to further explore the potential mechanisms involved in the treatment of GC.
Materials and Methods: The active compounds and potential targets of the SJZD and related genes for GC treatment were collected from a public database. Traditional Chinese medicine (TCM)-compound-target-disease networks, Venn diagrams, protein-protein interactions (PPIs), gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to obtain the bioactive compounds, key targets, and potential pathways. Next, the human gastric adenocarcinoma cell line NUGC-4 was inoculated subcutaneously into the right flank of NCG mice to build a tumor-bearing mouse model to further verify the findings.
Results: There were 117 compounds in the SJZD in total. The SJZD and GC had 161 and 3288 potential targets, respectively, among which 123 targets overlapped. The network analysis showed that quercetin, kaempferol formononetin, ginsenoside, atractylenolide III, etc., were bioactive molecules. The tumor necrosis factor (TNF), interleukin-6 (IL-6), cellular tumor antigen p53 (TP53), transcription factor AP-1 (JUN), and vascular endothelial growth factor A (VEGFA) were potential targets. A KEGG pathway enrichment analysis revealed 110 pathways involved in the pathways for cancer, including the PI3K-AKT signaling pathway. Validation experiments showed that the SJZD inhibited tumor growth and induced apoptosis in tumor cells. In addition, the SJZD downregulated expressions of VEGFA, iNOS, COX-2, and Bax/Bcl2 and inhibited the expressions of p-PI3K and p-AKT.
Conclusion: The SJZD treats GC by inhibiting blood vessel hyperplasia and inducing cell apoptosis by regulating the PI3K/AKT pathway.

References

  1. Gastroenterol Res Pract. 2017;2017:2920384 [PMID: 28197204]
  2. BMC Complement Altern Med. 2019 Nov 19;19(1):318 [PMID: 31744486]
  3. Development. 2016 Sep 1;143(17):3050-60 [PMID: 27578176]
  4. Front Pharmacol. 2018 Oct 09;9:1134 [PMID: 30356768]
  5. Chin J Cancer. 2016 Jan 08;35:10 [PMID: 26747273]
  6. J Exp Clin Cancer Res. 2011 Jan 25;30:13 [PMID: 21266034]
  7. Evid Based Complement Alternat Med. 2020 Oct 23;2020:8850259 [PMID: 33149755]
  8. Lancet Oncol. 2017 Jun;18(6):e307 [PMID: 28483410]
  9. Am J Clin Pathol. 2002 Apr;117(4):546-51 [PMID: 11939728]
  10. Gastroenterol Hepatol Bed Bench. 2015 Spring;8(Suppl 1):S6-S14 [PMID: 26171139]
  11. Cancer Epidemiol Biomarkers Prev. 2010 Sep;19(9):2287-97 [PMID: 20699372]
  12. Onco Targets Ther. 2020 Feb 13;13:1331-1341 [PMID: 32104000]
  13. Anticancer Res. 2010 Jun;30(6):2135-43 [PMID: 20651362]
  14. World J Gastroenterol. 2014 Apr 28;20(16):4483-90 [PMID: 24782601]
  15. Chin Med. 2021 Mar 3;16(1):25 [PMID: 33658066]
  16. Eur J Cancer. 2014 May;50(7):1330-44 [PMID: 24650579]
  17. Cancer Manag Res. 2018 Feb 07;10:239-248 [PMID: 29445300]
  18. Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169 [PMID: 27899622]
  19. World J Gastroenterol. 2002 Oct;8(5):792-6 [PMID: 12378617]
  20. Future Oncol. 2019 Aug;15(23):2723-2731 [PMID: 31234645]
  21. J Exp Clin Cancer Res. 2017 Dec 28;36(1):194 [PMID: 29282102]
  22. Kaohsiung J Med Sci. 2021 Mar;37(3):215-225 [PMID: 33231363]
  23. Cancer Commun (Lond). 2020 May;40(5):205-210 [PMID: 32359212]
  24. Asian Pac J Cancer Prev. 2016;17(4):1817-21 [PMID: 27221858]
  25. J Gastroenterol Hepatol. 2009 Jan;24(1):37-41 [PMID: 19196394]
  26. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Jun 1;1086:11-22 [PMID: 29654982]
  27. World J Gastroenterol. 2006 Jan 21;12(3):372-9 [PMID: 16489635]
  28. J Cancer. 2016 Jan 29;7(4):453-61 [PMID: 26918059]
  29. J Integr Med. 2017 Jul;15(4):282-287 [PMID: 28659232]
  30. J Environ Pathol Toxicol Oncol. 2019;38(3):217-227 [PMID: 31679309]
  31. Exp Ther Med. 2018 Feb;15(2):1718-1727 [PMID: 29399136]
  32. BMC Complement Altern Med. 2017 Jan 10;17(1):35 [PMID: 28073341]
  33. Med Sci Monit. 2018 Jun 23;24:4305-4316 [PMID: 29934492]
  34. Chin J Integr Med. 2007 Jun;13(2):156-9 [PMID: 17609919]
  35. Biomed Pharmacother. 2020 Feb;122:109726 [PMID: 31918283]
  36. World J Gastroenterol. 2018 Jun 28;24(24):2567-2581 [PMID: 29962814]
  37. World J Gastroenterol. 2002 Aug;8(4):591-5 [PMID: 12174362]

Word Cloud

Created with Highcharts 10.0.0SJZDpotentialtargetsGCcompoundstumortreatmentpathwaysfactorpathwaySijunziChineseusedmechanismsgastriccanceractiveinvolvedKEGGbioactivecellanalysisshowedgrowthVEGFAinhibitedapoptosisexpressionsBackground:decoctionclassicformulaclinicallygastrointestinaldisordersHoweverstudiesuncoveredantitumoreffectsThereforeworkaimedidentifyputativeexploreMaterialsMethods:relatedgenescollectedpublicdatabaseTraditionalmedicineTCM-compound-target-diseasenetworksVenndiagramsprotein-proteininteractionsPPIsgeneontologyGOKyotoEncyclopediaGenesGenomesobtainkeyNexthumanadenocarcinomalineNUGC-4inoculatedsubcutaneouslyrightflankNCGmicebuildtumor-bearingmousemodelverifyfindingsResults:117total1613288respectivelyamong123overlappednetworkquercetinkaempferolformononetinginsenosideatractylenolideIIIetcmoleculesnecrosisTNFinterleukin-6IL-6cellularantigenp53TP53transcriptionAP-1JUNvascularendothelialenrichmentrevealed110includingPI3K-AKTsignalingValidationexperimentsinducedcellsadditiondownregulatediNOSCOX-2Bax/Bcl2p-PI3Kp-AKTConclusion:treatsinhibitingbloodvesselhyperplasiainducingregulatingPI3K/AKTNetworkPharmacologyApproachUncoveringAntitumorEffectsPotentialMechanismsDecoctionTreatmentGastricCancer

Similar Articles

Cited By