Inflammatory Response to Regulated Cell Death in Gout and Its Functional Implications.

Jianan Zhao, Kai Wei, Ping Jiang, Cen Chang, Lingxia Xu, Linshuai Xu, Yiming Shi, Shicheng Guo, Yu Xue, Dongyi He
Author Information
  1. Jianan Zhao: Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  2. Kai Wei: Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  3. Ping Jiang: Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  4. Cen Chang: Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  5. Lingxia Xu: Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  6. Linshuai Xu: Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  7. Yiming Shi: Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  8. Shicheng Guo: Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States.
  9. Yu Xue: Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
  10. Dongyi He: Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Abstract

Gout, a chronic inflammatory arthritis disease, is characterized by hyperuricemia and caused by interactions between genetic, epigenetic, and metabolic factors. Acute gout symptoms are triggered by the inflammatory response to monosodium urate crystals, which is mediated by the innate immune system and immune cells (e.g., macrophages and neutrophils), the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation, and pro-inflammatory cytokine (e.g., IL-1β) release. Recent studies have indicated that the multiple programmed cell death pathways involved in the inflammatory response include pyroptosis, NETosis, necroptosis, and apoptosis, which initiate inflammatory reactions. In this review, we explore the correlation and interactions among these factors and their roles in the pathogenesis of gout to provide future research directions and possibilities for identifying potential novel therapeutic targets and enhancing our understanding of gout pathogenesis.

Keywords

References

  1. J Ethnopharmacol. 2018 Mar 1;213:159-165 [PMID: 29174375]
  2. Cell Mol Immunol. 2015 Jul;12(4):424-34 [PMID: 25109682]
  3. Eur J Immunol. 2016 Jan;46(1):223-9 [PMID: 26531064]
  4. Cell Mol Life Sci. 2016 Jun;73(11-12):2211-9 [PMID: 27048811]
  5. J Biol Chem. 2019 May 24;294(21):8384-8394 [PMID: 30971430]
  6. Cell. 2016 Feb 25;164(5):896-910 [PMID: 26919428]
  7. Cells. 2021 Jul 29;10(8): [PMID: 34440688]
  8. J Neuroinflammation. 2017 Apr 4;14(1):74 [PMID: 28376889]
  9. Front Immunol. 2012 Sep 03;3:277 [PMID: 22969769]
  10. Reumatismo. 2012 Jan 19;63(4):221-9 [PMID: 22303528]
  11. Nat Rev Rheumatol. 2020 Jul;16(7):380-390 [PMID: 32541923]
  12. Front Pharmacol. 2019 Mar 12;10:229 [PMID: 30914954]
  13. Sci Rep. 2016 Dec 09;6:38622 [PMID: 27934918]
  14. Cell Mol Life Sci. 2016 Jun;73(11-12):2153-63 [PMID: 27048809]
  15. Front Pharmacol. 2017 Jan 23;8:10 [PMID: 28167912]
  16. J Mol Endocrinol. 2021 Jun 21;67(2):27-40 [PMID: 34047713]
  17. Annu Rev Immunol. 2012;30:491-529 [PMID: 22224766]
  18. Int Immunopharmacol. 2021 Aug;97:107819 [PMID: 34098486]
  19. Curr Opin Immunol. 2013 Feb;25(1):46-52 [PMID: 23332826]
  20. Arthritis Res Ther. 2013 Nov 01;15(6):R176 [PMID: 24456929]
  21. Nat Commun. 2016 Jan 28;7:10274 [PMID: 26817517]
  22. Curr Opin Rheumatol. 2017 Mar;29(2):163-170 [PMID: 27941389]
  23. Arthritis Rheum. 2012 Feb;64(2):474-84 [PMID: 21952942]
  24. Iran J Immunol. 2017 Jun;14(2):90-98 [PMID: 28630380]
  25. Lancet. 2021 May 15;397(10287):1843-1855 [PMID: 33798500]
  26. J Cell Biochem. 2019 Dec;120(12):19660-19672 [PMID: 31407397]
  27. Front Immunol. 2021 Mar 03;12:638676 [PMID: 33746978]
  28. J Immunol. 2014 Jun 15;192(12):5671-8 [PMID: 24799565]
  29. Mol Immunol. 2010 Feb;47(5):991-9 [PMID: 20022380]
  30. Nature. 2006 Mar 9;440(7081):237-41 [PMID: 16407889]
  31. Ann Rheum Dis. 2015 May;74(5):908-11 [PMID: 25637002]
  32. Front Pharmacol. 2018 Oct 02;9:1123 [PMID: 30333752]
  33. Immunity. 2008 Nov 14;29(5):807-18 [PMID: 18993083]
  34. Oxid Med Cell Longev. 2020 Dec 31;2020:8706898 [PMID: 33488933]
  35. J Ethnopharmacol. 2017 Jun 9;205:173-177 [PMID: 28347828]
  36. Cell Res. 2019 May;29(5):347-364 [PMID: 30948788]
  37. Int J Mol Sci. 2019 Mar 11;20(5): [PMID: 30862032]
  38. J Cell Biol. 2010 Nov 1;191(3):677-91 [PMID: 20974816]
  39. Inflammopharmacology. 2017 May 15;: [PMID: 28508104]
  40. Cell Res. 2011 Feb;21(2):290-304 [PMID: 21060338]
  41. Biochem Cell Biol. 2022 Feb;100(1):28-36 [PMID: 34784237]
  42. Ann Rheum Dis. 2012 Jan;71(1):157-8 [PMID: 21953340]
  43. J Biol Chem. 2004 Apr 9;279(15):14792-802 [PMID: 14739280]
  44. Cell Rep. 2014 Aug 7;8(3):883-96 [PMID: 25066128]
  45. J Leukoc Biol. 2016 Jan;99(1):189-99 [PMID: 26269198]
  46. Front Pharmacol. 2018 Sep 25;9:1076 [PMID: 30319413]
  47. J Ethnopharmacol. 2019 Jul 15;239:111917 [PMID: 31028857]
  48. Ann Rheum Dis. 2016 Jan;75(1):286-94 [PMID: 25362043]
  49. Arthritis Res Ther. 2019 Aug 27;21(1):193 [PMID: 31455356]
  50. Immunol Rev. 2020 Mar;294(1):92-105 [PMID: 31853991]
  51. Front Med (Lausanne). 2021 Sep 30;8:692781 [PMID: 34660620]
  52. Front Cell Dev Biol. 2021 Apr 22;9:656273 [PMID: 33968934]
  53. Sci Rep. 2017 Sep 29;7(1):12409 [PMID: 28963531]
  54. Trends Cell Biol. 2017 Sep;27(9):673-684 [PMID: 28619472]
  55. Arthritis Res Ther. 2016 May 21;18(1):117 [PMID: 27209322]
  56. RMD Open. 2015 Aug 15;1(Suppl 1):e000046 [PMID: 26557370]
  57. Arthritis Rheum. 1991 Feb;34(2):141-5 [PMID: 1994910]
  58. Front Immunol. 2019 Nov 15;10:2519 [PMID: 31803174]
  59. Int Immunol. 2015 Sep;27(9):425-34 [PMID: 25855661]
  60. Arthritis Res Ther. 2007;9(2):R28 [PMID: 17352828]
  61. Cells. 2019 Jul 05;8(7): [PMID: 31284394]
  62. Nat Commun. 2015 Feb 06;6:6115 [PMID: 25655831]
  63. Cell Mol Biol Lett. 2021 May 7;26(1):17 [PMID: 33962586]
  64. J Biol Chem. 2018 Feb 16;293(7):2546-2557 [PMID: 29279328]
  65. Evid Based Complement Alternat Med. 2021 Oct 20;2021:8698232 [PMID: 34721646]
  66. BMC Complement Altern Med. 2017 Sep 6;17(1):447 [PMID: 28874151]
  67. Bioorg Med Chem. 2018 May 1;26(8):1653-1664 [PMID: 29472126]
  68. Am J Chin Med. 2019;47(1):135-151 [PMID: 30612459]
  69. Front Immunol. 2017 Oct 06;8:1260 [PMID: 29056937]
  70. J Immunol. 2015 Dec 15;195(12):5718-24 [PMID: 26546608]
  71. J Immunol. 2019 Aug 1;203(3):736-748 [PMID: 31209100]
  72. Arthritis Rheumatol. 2020 May;72(5):802-814 [PMID: 31738005]
  73. Eur J Immunol. 2017 Mar;47(3):585-596 [PMID: 27995621]
  74. Virchows Arch. 2000 Nov;437(5):534-9 [PMID: 11147175]
  75. Ann Rheum Dis. 2013 Apr;72 Suppl 2:ii96-9 [PMID: 23253918]
  76. Eur J Immunol. 2016 Jan;46(1):204-11 [PMID: 26449770]
  77. Rheumatology (Oxford). 2014 Jun;53(6):1043-53 [PMID: 24587486]
  78. Nat Rev Immunol. 2018 Feb;18(2):134-147 [PMID: 28990587]
  79. Biochem Biophys Res Commun. 2019 Sep 17;517(2):338-345 [PMID: 31358323]
  80. Front Pharmacol. 2019 Jan 07;9:1505 [PMID: 30666201]
  81. Inflammopharmacology. 2020 Dec;28(6):1481-1493 [PMID: 33006110]
  82. Arthritis Res Ther. 2018 Aug 29;20(1):192 [PMID: 30157934]
  83. Arthritis Res Ther. 2018 Aug 3;20(1):169 [PMID: 30075804]
  84. Sci Rep. 2014 Dec 02;4:7281 [PMID: 25445147]
  85. J Immunol. 2017 Jan 1;198(1):428-442 [PMID: 27903742]
  86. J Ethnopharmacol. 2013 Dec 12;150(3):1038-44 [PMID: 24184191]
  87. J Am Soc Nephrol. 2015 Oct;26(10):2399-413 [PMID: 25644111]
  88. J Agric Food Chem. 2015 Aug 26;63(33):7343-52 [PMID: 26234731]
  89. Curr Rheumatol Rep. 2009 Apr;11(2):154-60 [PMID: 19296889]
  90. Free Radic Biol Med. 2020 May 20;152:8-17 [PMID: 32151746]
  91. Nat Commun. 2015 Feb 18;6:6282 [PMID: 25693118]
  92. Mod Rheumatol. 2021 Jan;31(1):270-275 [PMID: 32148148]
  93. Ann Rheum Dis. 2021 Dec;80(12):1604-1614 [PMID: 34663597]
  94. Immunity. 2012 Mar 23;36(3):388-400 [PMID: 22444631]
  95. Pharmacol Res. 2019 Sep;147:104348 [PMID: 31336157]
  96. Molecules. 2021 Feb 18;26(4): [PMID: 33670601]
  97. Int Immunopharmacol. 2021 Nov;100:108107 [PMID: 34482265]
  98. Mod Rheumatol. 2018 May;28(3):513-517 [PMID: 28880687]
  99. Arthritis Res Ther. 2018 Sep 6;20(1):204 [PMID: 30189890]
  100. Antioxidants (Basel). 2021 Apr 06;10(4): [PMID: 33917369]
  101. Nat Chem Biol. 2019 Jun;15(6):560-564 [PMID: 31086329]
  102. Evid Based Complement Alternat Med. 2021 Jan 6;2021:8868527 [PMID: 33505510]
  103. J Biol Regul Homeost Agents. 2019 Jan 30;33(1):63-71 [PMID: 30697988]
  104. Arthritis Rheumatol. 2015 Jun;67(6):1646-56 [PMID: 25914377]
  105. Ann Rheum Dis. 2016 Jun;75(6):1236-45 [PMID: 26245757]
  106. ChemMedChem. 2016 Aug 19;11(16):1790-803 [PMID: 26990578]
  107. Br J Pharmacol. 2020 May;177(9):2042-2057 [PMID: 31883118]
  108. Arthritis Rheumatol. 2020 Jul;72(7):1192-1202 [PMID: 32134203]
  109. Int Immunopharmacol. 2021 Apr;93:107375 [PMID: 33517224]
  110. EMBO J. 2021 Oct 1;40(19):e108863 [PMID: 34459017]
  111. Molecules. 2019 Jun 06;24(11): [PMID: 31174271]
  112. Curr Opin Rheumatol. 2018 Mar;30(2):177-182 [PMID: 29251661]
  113. J Biol Chem. 2011 Jan 7;286(1):35-41 [PMID: 21051542]
  114. Nat Med. 2014 May;20(5):511-7 [PMID: 24784231]
  115. Cells. 2013 May 22;2(2):330-48 [PMID: 24709704]
  116. Rheumatology (Oxford). 2021 Oct 2;60(10):4920-4928 [PMID: 33521820]
  117. Methods Mol Biol. 2019;1982:517-528 [PMID: 31172493]
  118. J Ethnopharmacol. 2011 Oct 11;137(3):1353-9 [PMID: 21843623]
  119. Evid Based Complement Alternat Med. 2022 Jan 10;2022:5541232 [PMID: 35047046]
  120. Science. 2016 Jun 17;352(6292):aad1210 [PMID: 27313051]
  121. J Am Soc Nephrol. 2005 Oct;16(10):3006-14 [PMID: 16135773]
  122. Pharmacol Res. 2021 Mar;165:105445 [PMID: 33493655]
  123. Front Immunol. 2021 Dec 24;12:809806 [PMID: 35003139]
  124. Cells. 2019 Aug 23;8(9): [PMID: 31450835]
  125. Sci Rep. 2017 Nov 3;7(1):15003 [PMID: 29101355]
  126. Arthritis Res Ther. 2021 Apr 26;23(1):128 [PMID: 33902703]
  127. Cell Death Dis. 2012 Oct 11;3:e403 [PMID: 23059822]
  128. Arthritis Rheumatol. 2016 Jun;68(6):1531-9 [PMID: 26748935]
  129. Arthritis Rheumatol. 2014 Oct;66(10):2881-91 [PMID: 24943488]
  130. Cell Death Dis. 2020 May 26;11(5):394 [PMID: 32457291]
  131. Immunity. 2014 Mar 20;40(3):389-99 [PMID: 24631154]
  132. PLoS One. 2011;6(12):e29318 [PMID: 22195044]
  133. Arthritis Res Ther. 2013;15(5):R123 [PMID: 24432362]
  134. Toxicol Appl Pharmacol. 2021 Jan 1;410:115341 [PMID: 33242555]
  135. EMBO Mol Med. 2018 Apr;10(4): [PMID: 29531021]
  136. Sci Rep. 2020 Apr 14;10(1):6391 [PMID: 32286427]
  137. Bioengineered. 2022 Jan;13(1):345-356 [PMID: 34965184]
  138. J Biol Chem. 2016 Jan 1;291(1):103-9 [PMID: 26553871]
  139. Rheumatology (Oxford). 2021 Jun 18;60(6):2783-2790 [PMID: 33188698]
  140. J Cell Biol. 2007 Jan 15;176(2):231-41 [PMID: 17210947]
  141. J Immunol. 2015 Aug 15;195(4):1685-97 [PMID: 26195813]
  142. Front Immunol. 2021 Oct 20;12:739953 [PMID: 34745110]
  143. Inflammopharmacology. 2019 Feb;27(1):47-56 [PMID: 30600470]
  144. Rheumatology (Oxford). 2018 Apr 1;57(4):727-736 [PMID: 29340626]
  145. Mol Nutr Food Res. 2016 Oct;60(10):2297-2303 [PMID: 27234527]
  146. Immunity. 2012 Jul 27;37(1):85-95 [PMID: 22819042]
  147. Nat Med. 2009 Nov;15(11):1318-21 [PMID: 19855397]
  148. Ann Rheum Dis. 2016 Mar;75(3):593-600 [PMID: 25589513]
  149. J Ethnopharmacol. 2022 Jan 30;283:114707 [PMID: 34619319]
  150. Cell Mol Immunol. 2021 Apr;18(4):992-1004 [PMID: 32901127]
  151. Ann Rheum Dis. 2018 Apr;77(4):571-578 [PMID: 29247128]
  152. Phytomedicine. 2021 Apr;84:153521 [PMID: 33667838]
  153. J Korean Med Sci. 2017 Dec;32(12):1967-1973 [PMID: 29115078]
  154. Immunology. 2021 Oct;164(2):305-317 [PMID: 34002852]
  155. Sci Rep. 2020 Apr 1;10(1):5748 [PMID: 32238827]
  156. Arch Biochem Biophys. 2019 Jul 30;670:94-103 [PMID: 31255694]
  157. Inflamm Res. 2017 Mar;66(3):227-237 [PMID: 27853847]

MeSH Term

Arthritis, Gouty
Gout
Humans
Inflammasomes
Macrophages
Pyroptosis

Chemicals

Inflammasomes

Word Cloud

Created with Highcharts 10.0.0inflammatorygoutGoutinteractionsfactorsresponseimmuneegprogrammedcelldeathpyroptosisNETosisnecroptosisapoptosispathogenesischronicarthritisdiseasecharacterizedhyperuricemiacausedgeneticepigeneticmetabolicAcutesymptomstriggeredmonosodiumuratecrystalsmediatedinnatesystemcellsmacrophagesneutrophilsNACHTLRRPYDdomains-containingprotein3NLRP3inflammasomeactivationpro-inflammatorycytokineIL-1βreleaseRecentstudiesindicatedmultiplepathwaysinvolvedincludeinitiatereactionsreviewexplorecorrelationamongrolesprovidefutureresearchdirectionspossibilitiesidentifyingpotentialnoveltherapeutictargetsenhancingunderstandingInflammatoryResponseRegulatedCellDeathFunctionalImplicationsinflammation

Similar Articles

Cited By