The Role of the Two-Component QseBC Signaling System in Biofilm Formation and Virulence of Hypervirulent ATCC43816.

Jingnan Lv, Jie Zhu, Ting Wang, Xiaofang Xie, Tao Wang, Zhichen Zhu, Liang Chen, Fengyun Zhong, Hong Du
Author Information
  1. Jingnan Lv: Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
  2. Jie Zhu: Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
  3. Ting Wang: Department of Clinical Laboratory, Suzhou Science and Technology Town Hospital, Suzhou, China.
  4. Xiaofang Xie: Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
  5. Tao Wang: Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
  6. Zhichen Zhu: Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.
  7. Liang Chen: Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, United States.
  8. Fengyun Zhong: Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
  9. Hong Du: Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China.

Abstract

Hypervirulent (hvKP) is an evolving infectious pathogen associated with high mortality. The convergence of hypervirulence and multidrug resistance further challenges the clinical treatment options for infections. The QseBC two-component system (TCS) is a component of quorum-sensing regulatory cascade and functions as a global regulator of biofilm growth, bacterial motility, and virulence in . However, the functional mechanisms of QseBC in hvKP have not been reported, and we aim to examine the role of QseBC in regulating virulence in hvKP strain ATCC43816. The CRISPR-Cas9 system was used to construct , , and knockout in ATCC43816. No significant alterations in the growth and antibiotic susceptibility were detected between wild-type and mutants. The deletion of led to an increase of biofilm formation, resistance to serum killing, and high mortality in the model. RNAseq differential gene expression analysis exhibited that gene-associated biofilm formation (), bacterial type VI secretion system (), and biosynthesis of siderophore () were significantly upregulated in comparison with the wild-type control. In addition, , (encode OB-family protein), and AraC family transcriptional regulator IT767_23090 genes showed highest expressions in the absence of QseC, which might be related to increased virulence. The study provided new insights into the functional importance of QseBC in regulating the virulence of hvKP.

Keywords

References

  1. Microb Drug Resist. 2015 Apr;21(2):167-70 [PMID: 25389598]
  2. Microb Pathog. 2008 Apr;44(4):271-8 [PMID: 17997077]
  3. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10420-10425 [PMID: 16803956]
  4. Microbiology (Reading). 2012 Jan;158(Pt 1):259-271 [PMID: 21998161]
  5. PLoS Genet. 2015 Jun 23;11(6):e1005275 [PMID: 26102633]
  6. Appl Environ Microbiol. 2018 Nov 15;84(23): [PMID: 30217854]
  7. J Antimicrob Chemother. 2016 Jul;71(7):1820-5 [PMID: 27029850]
  8. Infect Immun. 2013 Oct;81(10):3552-65 [PMID: 23836821]
  9. Front Microbiol. 2021 Apr 08;12:642484 [PMID: 33897652]
  10. Infect Immun. 2010 Jul;78(7):2919-26 [PMID: 20404080]
  11. Appl Environ Microbiol. 2014 Mar;80(6):1882-92 [PMID: 24413602]
  12. Cell Biochem Biophys. 2014 Sep;70(1):391-8 [PMID: 24676679]
  13. Microbiology (Reading). 2014 Dec;160(Pt 12):2583-2594 [PMID: 25223341]
  14. J Clin Microbiol. 2019 Oct 23;57(11): [PMID: 31434721]
  15. Antimicrob Agents Chemother. 2020 Aug 20;64(9): [PMID: 32631827]
  16. Fish Shellfish Immunol. 2011 Mar;30(3):944-53 [PMID: 21288493]
  17. Microbiology (Reading). 2013 Jun;159(Pt 6):989-1001 [PMID: 23519160]
  18. J Bacteriol. 2015 Feb;197(3):654-68 [PMID: 25422303]
  19. Microb Pathog. 2019 Oct;135:103647 [PMID: 31356929]
  20. mBio. 2018 May 22;9(3): [PMID: 29789364]
  21. Mol Microbiol. 2002 Feb;43(3):809-21 [PMID: 11929534]
  22. Clin Microbiol Rev. 2019 May 15;32(3): [PMID: 31092506]
  23. BMC Microbiol. 2009 Feb 23;9:42 [PMID: 19236707]
  24. Annu Rev Microbiol. 2016 Sep 8;70:103-24 [PMID: 27607549]
  25. J Intern Med. 2020 Mar;287(3):283-300 [PMID: 31677303]
  26. Can J Microbiol. 2019 Sep;65(9):691-702 [PMID: 31075206]
  27. Microb Pathog. 2018 Mar;116:168-172 [PMID: 29360567]
  28. Mol Oral Microbiol. 2016 Oct;31(5):379-97 [PMID: 26426681]
  29. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16592-7 [PMID: 24062463]

Word Cloud

Created with Highcharts 10.0.0QseBChvKPsystembiofilmvirulenceATCC43816formationHypervirulenthighmortalityresistancetwo-componentregulatorgrowthbacterialfunctionalregulatingwild-typeevolvinginfectiouspathogenassociatedconvergencehypervirulencemultidrugchallengesclinicaltreatmentoptionsinfectionsTCScomponentquorum-sensingregulatorycascadefunctionsglobalmotilityHowevermechanismsreportedaimexaminerolestrainCRISPR-Cas9usedconstructknockoutsignificantalterationsantibioticsusceptibilitydetectedmutantsdeletionledincreaseserumkillingmodelRNAseqdifferentialgeneexpressionanalysisexhibitedgene-associatedtypeVIsecretionbiosynthesissiderophoresignificantlyupregulatedcomparisoncontroladditionencodeOB-familyproteinAraCfamilytranscriptionalIT767_23090genesshowedhighestexpressionsabsenceQseCmightrelatedincreasedstudyprovidednewinsightsimportanceRoleTwo-ComponentSignalingSystemBiofilmFormationVirulenceKlebsiellapneumoniaehypervirulent

Similar Articles

Cited By