Effects of Monovalent Salt on Protein-Protein Interactions of Dilute and Concentrated Monoclonal Antibody Formulations.

Amy Y Xu, Nicholas J Clark, Joseph Pollastrini, Maribel Espinoza, Hyo-Jin Kim, Sekhar Kanapuram, Bruce Kerwin, Michael J Treuheit, Susan Krueger, Arnold McAuley, Joseph E Curtis
Author Information
  1. Amy Y Xu: NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA. ORCID
  2. Nicholas J Clark: NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA.
  3. Joseph Pollastrini: Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
  4. Maribel Espinoza: Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
  5. Hyo-Jin Kim: Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
  6. Sekhar Kanapuram: Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
  7. Bruce Kerwin: Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
  8. Michael J Treuheit: Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
  9. Susan Krueger: NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA. ORCID
  10. Arnold McAuley: Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
  11. Joseph E Curtis: NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, MD 20899, USA. ORCID

Abstract

In this study, we used sodium chloride (NaCl) to extensively modulate non-specific protein-protein interactions (PPI) of a humanized anti-streptavidin monoclonal antibody class 2 molecule (ASA-IgG2). The changes in PPI with varying NaCl () and monoclonal antibody (mAb) concentration () were assessed using the diffusion interaction parameter and second virial coefficient measured from solutions with low to moderate . The effective structure factor measured from concentrated mAb solutions using small-angle X-ray and neutron scattering (SAXS/SANS) was also used to characterize the PPI. Our results found that the nature of net PPI changed not only with , but also with increasing . As a result, parameters measured from dilute and concentrated mAb samples could lead to different predictions on the stability of mAb formulations. We also compared experimentally determined viscosity results with those predicted from interaction parameters, including and . The lack of a clear correlation between interaction parameters and measured viscosity values indicates that the relationship between viscosity and PPI is concentration-dependent. Collectively, the behavior of flexible mAb molecules in concentrated solutions may not be correctly predicted using models where proteins are considered to be uniform colloid particles defined by parameters derived from low .

Keywords

References

  1. J Pharm Sci. 2018 Jul;107(7):1820-1830 [PMID: 29571738]
  2. MAbs. 2017 Jul;9(5):742-755 [PMID: 28475417]
  3. Curr Protoc Protein Sci. 2001 May;Appendix 3:Appendix 3F [PMID: 18429073]
  4. MAbs. 2020 Jan-Dec;12(1):1810488 [PMID: 32887536]
  5. Eur J Pharm Sci. 2013 Jun 14;49(3):400-10 [PMID: 23624326]
  6. Anal Biochem. 2016 May 15;501:4-22 [PMID: 26896682]
  7. Sci Rep. 2021 Apr 29;11(1):9283 [PMID: 33927258]
  8. J Control Release. 2018 Sep 28;286:301-314 [PMID: 30077735]
  9. Mol Pharm. 2021 Dec 6;18(12):4385-4392 [PMID: 34699237]
  10. Protein Sci. 2003 May;12(5):903-13 [PMID: 12717013]
  11. Biophys J. 2010 Oct 20;99(8):2657-65 [PMID: 20959107]
  12. Mol Pharm. 2016 Mar 7;13(3):915-23 [PMID: 26849155]
  13. J Chem Phys. 2005 Jan 22;122(4):44507 [PMID: 15740267]
  14. Mol Pharm. 2020 Nov 2;17(11):4323-4333 [PMID: 32965126]
  15. Curr Protoc Protein Sci. 2012 Nov;Chapter 17:Unit17.14 [PMID: 23151743]
  16. MAbs. 2015;7(1):212-30 [PMID: 25559441]
  17. J Phys Chem B. 2014 Aug 28;118(34):10111-9 [PMID: 25117055]
  18. Biophys J. 2013 Aug 6;105(3):720-31 [PMID: 23931320]
  19. Data Brief. 2015 Nov 30;6:47-52 [PMID: 26793756]
  20. Biotechnol Bioeng. 1992 Dec 5;40(10):1155-64 [PMID: 18601066]
  21. Front Mol Biosci. 2019 Mar 13;6:10 [PMID: 30918892]
  22. BioDrugs. 2018 Oct;32(5):425-440 [PMID: 30043229]
  23. Anal Bioanal Chem. 2018 Mar;410(8):2141-2159 [PMID: 29423600]
  24. MAbs. 2016;8(2):216-28 [PMID: 26736022]
  25. Biophys J. 2002 Mar;82(3):1620-31 [PMID: 11867474]
  26. Comput Struct Biotechnol J. 2016 Dec 21;15:117-130 [PMID: 28138368]
  27. Antibodies (Basel). 2017;6(4): [PMID: 30364605]
  28. Biotechnol Bioeng. 2017 Sep;114(9):2043-2056 [PMID: 28464235]
  29. J Appl Crystallogr. 2017 Sep 05;50(Pt 5):1545-1553 [PMID: 29021737]
  30. Protein Sci. 2005 Apr;14(4):1071-81 [PMID: 15741341]
  31. J Pharm Sci. 2019 Jan;108(1):142-154 [PMID: 30017887]
  32. MAbs. 2013 Jan-Feb;5(1):102-13 [PMID: 23255003]
  33. J Phys Chem B. 2016 Dec 15;120(49):12511-12518 [PMID: 27973814]
  34. Curr Pharm Biotechnol. 2005 Dec;6(6):427-36 [PMID: 16375727]
  35. J Biochem. 2014 Jan;155(1):63-71 [PMID: 24155259]
  36. J Pharm Sci. 2019 Aug;108(8):2517-2526 [PMID: 30885659]
  37. J Phys Chem B. 2007 Jan 11;111(1):251-9 [PMID: 17201449]
  38. J Phys Chem B. 2014 Jun 5;118(22):5817-31 [PMID: 24810917]
  39. J Pharm Sci. 2020 Jan;109(1):340-352 [PMID: 31201906]
  40. Pharm Res. 2017 Jul;34(7):1378-1390 [PMID: 28401430]
  41. MAbs. 2016 Jul;8(5):928-40 [PMID: 27031922]
  42. J Synchrotron Radiat. 2015 Jan;22(1):180-6 [PMID: 25537607]
  43. Pharm Res. 2009 Dec;26(12):2607-18 [PMID: 19795191]
  44. J Phys Chem B. 2017 Sep 7;121(35):8276-8290 [PMID: 28796519]
  45. Mol Pharm. 2019 Oct 7;16(10):4319-4338 [PMID: 31487466]
  46. Mol Pharm. 2012 Apr 2;9(4):791-802 [PMID: 22352470]
  47. J Phys Chem B. 2016 Jan 21;120(2):278-91 [PMID: 26707135]
  48. Mol Pharm. 2020 May 4;17(5):1748-1756 [PMID: 32101441]
  49. Biotechnol Bioeng. 2014 Aug;111(8):1513-20 [PMID: 25097914]
  50. J Biomol Screen. 2015 Apr;20(4):468-83 [PMID: 25576149]
  51. Antibodies (Basel). 2020 Jul 29;9(3): [PMID: 32751063]
  52. J Pharm Sci. 2019 May;108(5):1663-1674 [PMID: 30593783]
  53. J Pharm Sci. 2012 Mar;101(3):998-1011 [PMID: 22113861]
  54. Biotechnol Bioeng. 2011 Jul;108(7):1494-508 [PMID: 21480193]
  55. J Phys Chem B. 2012 Jul 19;116(28):8045-57 [PMID: 22694284]
  56. Biophys Rev. 2013 Jun;5(2):187-194 [PMID: 28510157]
  57. J Pharm Sci. 2004 Jun;93(6):1390-402 [PMID: 15124199]
  58. Biophys J. 2012 Jul 3;103(1):69-78 [PMID: 22828333]
  59. Mol Pharm. 2021 May 3;18(5):1939-1955 [PMID: 33789055]
  60. Soft Matter. 2018 Jul 25;14(29):6001-6012 [PMID: 29972188]
  61. J Phys Chem B. 2019 Jun 27;123(25):5274-5290 [PMID: 31146525]
  62. J Pharm Sci. 2016 Aug;105(8):2310-8 [PMID: 27364461]
  63. J Phys Chem B. 2017 May 11;121(18):4756-4767 [PMID: 28422503]
  64. J Colloid Interface Sci. 2012 Oct 15;384(1):207-16 [PMID: 22840854]
  65. J Pharm Sci. 2017 Nov;106(11):3230-3241 [PMID: 28668340]
  66. Adv Drug Deliv Rev. 2011 Oct;63(13):1118-59 [PMID: 21855584]
  67. Mol Pharm. 2015 Jan 5;12(1):127-39 [PMID: 25383990]
  68. Protein Sci. 2001 Nov;10(11):2325-35 [PMID: 11604538]
  69. Nat Protoc. 2014 Jul;9(7):1727-39 [PMID: 24967622]

Grants

  1. NIST biomanufacturing initiative/NIST DOC
  2. DMR-1508249/National Science Foundation
  3. DMR-1829070/National Science Foundation
  4. 1-P30-GM124166-01A1/NIH HHS
  5. EP/K039121/1/Engineering and Physical Sciences Research Council
  6. CHE-1265821/National Sleep Foundation

Word Cloud

Created with Highcharts 10.0.0PPImAbmeasuredparametersusinginteractionsolutionsconcentratedalsoviscosityusedNaClprotein-proteininteractionsmonoclonalantibodylowsmall-anglescatteringresultsstabilitypredictedstudysodiumchlorideextensivelymodulatenon-specifichumanizedanti-streptavidinclass2moleculeASA-IgG2changesvaryingconcentrationassesseddiffusionparametersecondvirialcoefficientmoderateeffectivestructurefactorX-rayneutronSAXS/SANScharacterizefoundnaturenetchangedincreasingresultdilutesamplesleaddifferentpredictionsformulationscomparedexperimentallydeterminedincludinglackclearcorrelationvaluesindicatesrelationshipconcentration-dependentCollectivelybehaviorflexiblemoleculesmaycorrectlymodelsproteinsconsidereduniformcolloidparticlesdefinedderivedEffectsMonovalentSaltProtein-ProteinInteractionsDiluteConcentratedMonoclonalAntibodyFormulationsformulationdevelopmentprotein

Similar Articles

Cited By