Inference of high-resolution trajectories in single-cell RNA-seq data by using RNA velocity.

Ziqi Zhang, Xiuwei Zhang
Author Information
  1. Ziqi Zhang: School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  2. Xiuwei Zhang: School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Abstract

Trajectory inference (TI) methods infer cell developmental trajectory from single-cell RNA sequencing data. Current TI methods can be categorized into those using RNA velocity information and those using only single-cell gene expression data. The latter type of methods are restricted to certain trajectory structures, and cannot determine cell developmental direction. Recently proposed TI methods using RNA velocity information have limited accuracy. We present CellPath, a method that infers cell trajectories by integrating single-cell gene expression and RNA velocity information. CellPath overcomes the restrictions of TI methods that do not use RNA velocity information: it can find multiple high-resolution trajectories without constraints on the trajectory structure, and can automatically detect the direction of each trajectory path. We evaluate CellPath on both real and simulated datasets and show that CellPath finds more accurate and detailed trajectories than the state-of-the-art TI methods using or not using RNA velocity information.

Keywords

References

  1. BMC Genomics. 2018 Jun 19;19(1):477 [PMID: 29914354]
  2. Nature. 2018 Aug;560(7719):494-498 [PMID: 30089906]
  3. Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5076-82 [PMID: 24706886]
  4. Nat Biotechnol. 2019 May;37(5):547-554 [PMID: 30936559]
  5. Nature. 2019 Jul;571(7765):419-423 [PMID: 31292545]
  6. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  7. Cell. 2019 Feb 7;176(4):928-943.e22 [PMID: 30712874]
  8. Development. 2019 Jun 27;146(12): [PMID: 31249007]
  9. Curr Biol. 2017 Nov 6;27(21):3315-3329.e6 [PMID: 29107547]
  10. Cell. 2022 Feb 17;185(4):690-711.e45 [PMID: 35108499]
  11. Cell Syst. 2020 Mar 25;10(3):265-274.e11 [PMID: 32135093]
  12. Nat Methods. 2017 Jun;14(6):565-571 [PMID: 28504683]
  13. J Neurosci. 2014 Sep 3;34(36):11919-28 [PMID: 25186740]
  14. Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2467-E2476 [PMID: 29463712]
  15. Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33 [PMID: 27322403]
  16. Science. 2018 Jun 1;360(6392): [PMID: 29700225]
  17. Nat Biotechnol. 2020 Dec;38(12):1408-1414 [PMID: 32747759]
  18. Nat Commun. 2019 Jun 13;10(1):2611 [PMID: 31197158]
  19. Nat Biotechnol. 2019 Dec;37(12):1482-1492 [PMID: 31796933]
  20. Mol Syst Biol. 2021 Aug;17(8):e10282 [PMID: 34435732]
  21. Bioinformatics. 2022 Jan 3;38(2):391-396 [PMID: 34500455]
  22. Genes Dev. 2003 Oct 15;17(20):2591-603 [PMID: 14561778]
  23. Neuron. 2006 Sep 21;51(6):835-43 [PMID: 16982427]
  24. Science. 2018 May 25;360(6391): [PMID: 29674432]
  25. J Comp Neurol. 2006 Jun 10;496(5):684-97 [PMID: 16615126]
  26. Science. 2018 Jun 1;360(6392):981-987 [PMID: 29700229]
  27. Nat Neurosci. 2018 Feb;21(2):290-299 [PMID: 29335606]
  28. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  29. Nat Commun. 2017 Jun 19;8(1):22 [PMID: 28630425]
  30. Genome Biol. 2019 Oct 11;20(1):206 [PMID: 31604482]
  31. Science. 2020 Feb 14;367(6479): [PMID: 31974159]
  32. Development. 2019 Jun 17;146(12): [PMID: 31160421]
  33. Nat Methods. 2016 Oct;13(10):845-8 [PMID: 27571553]
  34. PLoS Comput Biol. 2023 Aug 17;19(8):e1011288 [PMID: 37590228]
  35. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  36. Nat Commun. 2021 Jun 24;12(1):3942 [PMID: 34168133]
  37. Cell Rep. 2017 Dec 12;21(11):3271-3284 [PMID: 29241552]
  38. Nat Methods. 2022 Feb;19(2):159-170 [PMID: 35027767]
  39. Bioinformatics. 2021 Oct 25;37(20):3509-3513 [PMID: 33974009]
  40. Nature. 2019 Feb;566(7745):496-502 [PMID: 30787437]
  41. Genome Biol. 2019 Mar 19;20(1):59 [PMID: 30890159]
  42. Nucleic Acids Res. 2018 Nov 16;46(20):e119 [PMID: 30102402]
  43. Genes Dev. 2016 Aug 15;30(16):1852-65 [PMID: 27585590]
  44. Mol Brain. 2008 Sep 10;1:6 [PMID: 18803808]
  45. Mol Syst Biol. 2019 Jun 19;15(6):e8746 [PMID: 31217225]
  46. Nat Commun. 2019 Jul 17;10(1):3138 [PMID: 31316066]

MeSH Term

Sequence Analysis, RNA
RNA
Single-Cell Gene Expression Analysis
Single-Cell Analysis
Cell Differentiation

Chemicals

RNA

Word Cloud

Created with Highcharts 10.0.0RNAvelocitymethodsusingTItrajectorysingle-cellinformationCellPathtrajectoriescelldatacaninferencedevelopmentalsequencinggeneexpressiondirectionhigh-resolutionTrajectoryinferCurrentcategorizedlattertyperestrictedcertainstructuresdetermineRecentlyproposedlimitedaccuracypresentmethodinfersintegratingovercomesrestrictionsuseinformation:findmultiplewithoutconstraintsstructureautomaticallydetectpathevaluaterealsimulateddatasetsshowfindsaccuratedetailedstate-of-the-artInferenceRNA-seq

Similar Articles

Cited By (21)