Effect of a High Fat Diet vs. High Carbohydrate Diets With Different Glycemic Indices on Metabolic Parameters in Male Endurance Athletes: A Pilot Trial.

Denise Zdzieblik, Hilke Friesenborg, Albert Gollhofer, Daniel König
Author Information
  1. Denise Zdzieblik: Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Freiburg, Germany.
  2. Hilke Friesenborg: Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Freiburg, Germany.
  3. Albert Gollhofer: Department for Nutrition, Institute for Sports and Sports Science, University of Freiburg, Freiburg, Germany.
  4. Daniel König: Centre for Sports Science and University Sports, Department for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria.

Abstract

Consuming low glycemic carbohydrates leads to an increased muscle fat utilization and preservation of intramuscular glycogen, which is associated with improved flexibility to metabolize either carbohydrates or fats during endurance exercise. The purpose of this trial was to investigate the effect of a 4-week high fat low carbohydrate (HFLC-G: ≥65% high glycemic carbohydrates per day; = 9) vs. high carbohydrate low glycemic (LGI-G: ≥65% low glycemic carbohydrates daily; = 10) or high glycemic (HGI-G: ≥65% fat, ≤ 50 g carbohydrates daily; = 9) diet on fat and carbohydrate metabolism at rest and during exercise in 28 male athletes. Changes in metabolic parameters under resting conditions and during cycle ergometry (submaximal and with incremental workload) from pre- to post-intervention were determined by lactate diagnostics and measurements of the respiratory exchange ratio (RER). Additionally, body composition and perceptual responses to the diets [visual analog scale (VAS)] were measured. A significance level of α = 0.05 was considered. HFLC-G was associated with markedly decreased lactate concentrations during the submaximal (-0.553 ± 0.783 mmol/l, = 0.067) and incremental cycle test [-5.00 ± 5.71 (mmol/l) × min; = 0.030] and reduced RER values at rest (-0.058 ± 0.108; = 0.146) during the submaximal (-0.078 ± 0.046; = 0.001) and incremental cycle test (-1.64 ± 0.700 RER × minutes; < 0.001). In the HFLC-G, fat mass ( < 0.001) decreased. In LGI-G lactate, concentrations decreased in the incremental cycle test [-6.56 ± 6.65 (mmol/l) × min; = 0.012]. In the LGI-G, fat mass ( < 0.01) and VAS values decreased, indicating improved levels of gastrointestinal conditions and perception of effort during training. The main findings in the HGI-G were increased RER (0.047 ± 0.076; = 0.117) and lactate concentrations (0.170 ± 0.206 mmol/l, = 0.038) at rest. Although the impact on fat oxidation in the LGI-G was not as pronounced as following the HFLC diet, the adaptations in the LGI-G were consistent with an improved metabolic flexibility and additional benefits regarding exercise performance in male athletes.

Keywords

References

  1. J Appl Physiol (1985). 2005 Aug;99(2):707-14 [PMID: 15831796]
  2. Appl Physiol Nutr Metab. 2012 Dec;37(6):1110-7 [PMID: 22963385]
  3. Res Nurs Health. 2008 Apr;31(2):180-91 [PMID: 18183564]
  4. Am J Clin Nutr. 2002 Jul;76(1):5-56 [PMID: 12081815]
  5. J Sports Sci. 2011;29 Suppl 1:S17-27 [PMID: 21660838]
  6. Lancet. 2011 Aug 27;378(9793):826-37 [PMID: 21872751]
  7. Br J Nutr. 2012 Aug;108 Suppl 1:S81-90 [PMID: 22916819]
  8. Int J Sport Nutr Exerc Metab. 2019 Feb 26;29(4):406–410 [PMID: 30507268]
  9. BMC Sports Sci Med Rehabil. 2015 Apr 18;7:9 [PMID: 25905021]
  10. JAMA. 2014 Sep 3;312(9):923-33 [PMID: 25182101]
  11. Eur J Appl Physiol Occup Physiol. 1994;69(4):287-93 [PMID: 7851362]
  12. Nutrients. 2014 Apr 29;6(5):1782-808 [PMID: 24787031]
  13. Scand J Clin Lab Invest. 1973 Dec;32(4):317-23 [PMID: 4771101]
  14. Am J Physiol Endocrinol Metab. 2006 Feb;290(2):E380-8 [PMID: 16188909]
  15. J Int Soc Sports Nutr. 2019 Nov 7;16(1):50 [PMID: 31699159]
  16. Cochrane Database Syst Rev. 2007 Jul 18;(3):CD005105 [PMID: 17636786]
  17. Metabolism. 2002 Jun;51(6):678-90 [PMID: 12037719]
  18. Eur J Sport Sci. 2015;15(1):13-20 [PMID: 25275931]
  19. Diabetes Care. 1995 Jul;18(7):962-70 [PMID: 7555557]
  20. Nutr Hosp. 2019 Dec 26;36(6):1384-1388 [PMID: 31718211]
  21. Metabolism. 2016 Mar;65(3):100-10 [PMID: 26892521]
  22. J Pain. 2003 Sep;4(7):407-14 [PMID: 14622683]
  23. Nutrients. 2014 Jun 27;6(7):2493-508 [PMID: 24979615]
  24. J Sports Sci. 2009 Dec;27(14):1545-54 [PMID: 19967585]
  25. Metabolism. 1983 Aug;32(8):769-76 [PMID: 6865776]
  26. J Am Coll Cardiol. 2008 Jan 22;51(3):249-55 [PMID: 18206731]
  27. Arthritis Care Res (Hoboken). 2011 Nov;63 Suppl 11:S240-52 [PMID: 22588748]
  28. Nutrients. 2018 Mar 17;10(3): [PMID: 29562613]
  29. Am J Clin Nutr. 2006 Aug;84(2):354-60 [PMID: 16895883]
  30. Acta Physiol Scand. 1967 Oct-Nov;71(2):140-50 [PMID: 5584523]
  31. Sports Med. 2017 Jun;47(6):1087-1101 [PMID: 27677914]
  32. Am J Clin Nutr. 1998 Mar;67(3 Suppl):519S-526S [PMID: 9497163]
  33. Int J Food Sci Nutr. 2018 Sep;69(6):741-752 [PMID: 29252040]
  34. J Physiol. 1949 Aug;109(1-2):1-9 [PMID: 15394301]
  35. Am J Physiol. 1997 Aug;273(2 Pt 1):E268-75 [PMID: 9277379]
  36. J Appl Physiol (1985). 2000 May;88(5):1707-14 [PMID: 10797133]
  37. Am J Epidemiol. 2011 Feb 15;173(4):448-58 [PMID: 21242302]
  38. Soz Praventivmed. 1999;44(2):55-64 [PMID: 10407953]
  39. Nutrients. 2019 Sep 09;11(9): [PMID: 31505870]
  40. Metabolism. 1999 Dec;48(12):1509-17 [PMID: 10599981]
  41. J Physiol. 2017 May 1;595(9):2785-2807 [PMID: 28012184]
  42. Br J Nutr. 2003 Dec;90(6):1049-56 [PMID: 14641964]
  43. J Appl Physiol (1985). 2006 Jan;100(1):194-202 [PMID: 16141377]
  44. Appl Physiol Nutr Metab. 2011 Feb;36(1):12-22 [PMID: 21326374]
  45. J Int Soc Sports Nutr. 2012 Jul 26;9(1):34 [PMID: 22835211]
  46. Physiol Behav. 2012 Oct 10;107(3):374-80 [PMID: 22935440]
  47. J Int Soc Sports Nutr. 2017 Jul 12;14:22 [PMID: 28706467]
  48. Nutrients. 2021 Mar 06;13(3): [PMID: 33800770]
  49. Nutrition. 2018 Oct;54:26-32 [PMID: 29729504]
  50. Int J Sport Nutr Exerc Metab. 2005 Feb;15(1):1-14 [PMID: 15902985]
  51. Med Care. 2003 May;41(5):582-92 [PMID: 12719681]
  52. Sports Med. 2014 May;44 Suppl 1:S87-96 [PMID: 24791920]
  53. Med Sci Sports Exerc. 2015 Nov;47(11):2473-9 [PMID: 26473759]
  54. Front Nutr. 2016 Nov 03;3:49 [PMID: 27857943]
  55. Sports Med. 2015 Nov;45 Suppl 1:S33-49 [PMID: 26553488]
  56. Int J Sport Nutr Exerc Metab. 2006 Oct;16(5):510-27 [PMID: 17240783]
  57. J Appl Physiol (1985). 2006 Jan;100(1):7-8 [PMID: 16357078]
  58. Redox Biol. 2020 Aug;35:101454 [PMID: 32113910]
  59. Int J Sports Med. 2004 Jan;25(1):32-7 [PMID: 14750010]
  60. Br J Nutr. 2012 Aug;108 Suppl 2:S105-12 [PMID: 23107521]

Word Cloud

Created with Highcharts 10.0.00=fat±glycemichighcarbohydratesincrementallactatelowcarbohydratecycleRERdecreasedmmol/ltestLGI-Gimprovedexercise≥65%restsubmaximalconcentrations-0×001<increasedassociatedflexibilityendurance9vsdailydietmaleathletesmetabolicconditionsrespiratoryexchangeratioVASHFLC-GminvaluesmassoxidationHighConsumingleadsmuscleutilizationpreservationintramuscularglycogenmetabolizeeitherfatspurposetrialinvestigateeffect4-weekHFLC-G:perdayLGI-G:10HGI-G:50gmetabolism28Changesparametersrestingergometryworkloadpre-post-interventiondetermineddiagnosticsmeasurementsAdditionallybodycompositionperceptualresponsesdiets[visualanalogscale]measuredsignificancelevelα05consideredmarkedly553783067[-500571030]reduced058108146078046-164700minutes[-656665012]01indicatinglevelsgastrointestinalperceptionefforttrainingmainfindingsHGI-G047076117170206038AlthoughimpactpronouncedfollowingHFLCadaptationsconsistentadditionalbenefitsregardingperformanceEffectFatDietCarbohydrateDietsDifferentGlycemicIndicesMetabolicParametersMaleEnduranceAthletes:PilotTrialindex

Similar Articles

Cited By