Dietary patterns in association with the expression of pro-metastatic genes in primary breast cancer.

Mitra Foroutan-Ghaznavi, Seyed-Mohammad Mazloomi, Vahid Montazeri, Saeed Pirouzpanah
Author Information
  1. Mitra Foroutan-Ghaznavi: Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, 7134814336, Shiraz, Iran. ORCID
  2. Seyed-Mohammad Mazloomi: Nutrition Research Center, Shiraz University of Medical Sciences, 7193635899, Shiraz, Iran. ORCID
  3. Vahid Montazeri: Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, 5166414766, Tabriz, Iran. ORCID
  4. Saeed Pirouzpanah: Stem Cell Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran. pirouzpanah@gmail.com. ORCID

Abstract

PURPOSE: Metastasis is a major leading cause of mortality in female breast cancer (BrCa). Cellular motility is a pathological process of metastasis remarked by the overexpression of cortactin (CTTN), Ras homolog family member-A (RhoA), and Rho-associated kinase (ROCK) genes. Their balance is responsible for upholding the integrity of healthy epithelial cell junctions. This study aimed to explore the associations between a posteriori dietary patterns and the expression levels of pro-metastatic genes in primary BrCa.
METHODS: In this consecutive case series, 215 eligible women, newly diagnosed with histologically confirmed non-metastatic BrCa (stage I-IIIA), were recruited from Hospitals in Tabriz, Northwestern Iran (2015-2017). The tumoral expression levels of genes were quantified using real-time reverse transcription-polymerase chain reaction. Dietary data assessment was carried out using a validated food frequency questionnaire.
RESULTS: Three dietary patterns were identified using principal component analysis (KMO = 0.699). Adherence to the "vegan" pattern (vegetables, fruits, legumes, nuts, seeds, and whole grains) was inversely associated with the expression levels of RhoA (OR = 0.24, 95%CI 0.07-0.79) and ROCK (OR = 0.26, 95%CI 0.08-0.87). In addition, the highest adherence to the "prudent" pattern (spices, seafood, dairy, and vegetable oils) decreased the odds of overexpressions at RhoA (OR = 0.26, 95%CI 0.08-0.84) and ROCK genes (OR = 0.29, 95%CI 0.09-0.95). The highest adherence to "Western" pattern (meat, processed meat, hydrogenated fat, fast food, refined cereals, sweets, and soft drinks) was a risk factor associated with the overexpression of RhoA (OR = 3.15, 95%CI 1.12-8.85).
CONCLUSION: Adherence to healthy dietary patterns was significantly associated with the downregulation of pro-metastatic genes. Findings provided new implications to advance the nutrigenomic knowledge to prevent the odds of over-regulations in pro-metastatic genes of the primary BrCa.

Keywords

References

  1. The global cancer observatory. All cancers. World Health Organization (2019). https://gco.iarc.fr/
  2. Mehdipour P, Pirouzpanah S, Sarafnejad A, Atri M, Tahereh Shahrestani S, Haidari M (2009) Prognostic implication of CDC25A and cyclin E expression on primary breast cancer patients. Cell Biol Int 33(10):1050–1056. https://doi.org/10.1016/j.cellbi.2009.06.016 [DOI: 10.1016/j.cellbi.2009.06.016]
  3. Mehdipour P, Pirouzpanah S, Kheirollahi M, Atri M (2011) Androgen receptor gene CAG repeat polymorphism and breast cancer risk in Iranian women: a case-control study. Breast J 17(1):39–46. https://doi.org/10.1111/j.1524-4741.2010.01031.x [DOI: 10.1111/j.1524-4741.2010.01031.x]
  4. Chen W, Hoffmann AD, Liu H, Liu X (2018) Organotropism: new insights into molecular mechanisms of breast cancer metastasis. NPJ Precis Oncol 2(1):1–12. https://doi.org/10.1038/s41698-018-0047-0 [DOI: 10.1038/s41698-018-0047-0]
  5. Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS (2017) Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol 27(8):595–607. https://doi.org/10.1016/j.tcb.2017.03.003 [DOI: 10.1016/j.tcb.2017.03.003]
  6. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009. https://doi.org/10.1016/j.cell.2011.11.016 [DOI: 10.1016/j.cell.2011.11.016]
  7. Kirkbride KC, Sung BH, Sinha S, Weaver AM (2011) Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh Migr 5(2):187–198. https://doi.org/10.4161/cam.5.2.14773 [DOI: 10.4161/cam.5.2.14773]
  8. Meirson T, Genna A, Lukic N, Makhnii T, Alter J, Sharma VP et al (2018) Targeting invadopodia-mediated breast cancer metastasis by using ABL kinase inhibitors. Oncotarget 9(31):22158–83. https://doi.org/10.18632/oncotarget.25243 [DOI: 10.18632/oncotarget.25243]
  9. Tsai WC, Lin CK, Lee HS, Gao HW, Nieh S, Chan DC et al (2013) The correlation of cortactin and fascin-1 expression with clinicopathological parameters in pancreatic and ampulla of Vater adenocarcinoma. APMIS 121(3):171–181. https://doi.org/10.1111/j.1600-0463.2012.02952.x [DOI: 10.1111/j.1600-0463.2012.02952.x]
  10. Marioni G, Lionello M, Marchese-Ragona R, Fasanaro E, Valentini E, Zanoletti E et al (2018) Cortactin and phosphorylated cortactin tyr421 and tyr466 expression in supraglottic laryngeal carcinomas and lymph node metastases. Int J Biol Markers 33(1):79–86. https://doi.org/10.5301/ijbm.5000297 [DOI: 10.5301/ijbm.5000297]
  11. Rothschild BL, Shim AH, Ammer AG, Kelley LC, Irby KB, Head JA et al (2006) Cortactin overexpression regulates actin-related protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 amplification. Cancer Res 66(16):8017–8025. https://doi.org/10.1158/0008-5472.CAN-05-4490 [DOI: 10.1158/0008-5472.CAN-05-4490]
  12. Noh SJ, Baek HA, Park HS, Jang KY, Moon WS, Kang MJ et al (2013) Expression of SIRT1 and cortactin is associated with progression of non-small cell lung cancer. Pathol Res Pract 209(6):365–370. https://doi.org/10.1016/j.prp.2013.03.011 [DOI: 10.1016/j.prp.2013.03.011]
  13. Mazloomi S-M, Foroutan-Ghaznavi M, Montazeri V, Tavoosidana G, Fakhrjou A, Nozad-Charoudeh H et al (2021) Profiling the expression of pro-metastatic genes in association with the clinicopathological features of primary breast cancer. Cancer Cell Int 21(1):6. https://doi.org/10.1186/s12935-020-01708-8 [DOI: 10.1186/s12935-020-01708-8]
  14. Ni Q-F, Yu J-W, Qian F, Sun N-Z, Xiao J-J, Zhu J-W (2015) Cortactin promotes colon cancer progression by regulating ERK pathway. Int J Oncol 47(3):1034–1042. https://doi.org/10.3892/ijo.2015.3072 [DOI: 10.3892/ijo.2015.3072]
  15. Gilkes DM, Xiang L, Lee SJ, Chaturvedi P, Hubbi ME, Wirtz D et al (2014) Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci 111(3):E384–E393. https://doi.org/10.1073/pnas.1321510111 [DOI: 10.1073/pnas.1321510111]
  16. Bottino J, Gelaleti GB, Maschio LB, Jardim-Perassi BV, de Campos Zuccari DAP (2014) Immunoexpression of ROCK-1 and MMP-9 as prognostic markers in breast cancer. Acta Histochem 116(8):1367–1373. https://doi.org/10.1016/j.acthis.2014.08.009 [DOI: 10.1016/j.acthis.2014.08.009]
  17. Lane J, Martin TA, Watkins G, Mansel RE, Jiang WG (2008) The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. Int J Oncol 33(3):585–593. https://doi.org/10.3892/ijo_00000044 [DOI: 10.3892/ijo_00000044]
  18. Xiao Y, Xia J, Li L, Ke Y, Cheng J, Xie Y et al (2019) Associations between dietary patterns and the risk of breast cancer: a systematic review and meta-analysis of observational studies. Breast Cancer Res 21(1):16–38. https://doi.org/10.1186/s13058-019-1096-1 [DOI: 10.1186/s13058-019-1096-1]
  19. Hou R, Wei J, Hu Y, Zhang X, Sun X, Chandrasekar EK et al (2019) Healthy dietary patterns and risk and survival of breast cancer: a meta-analysis of cohort studies. Cancer Causes Control 30(8):835–846. https://doi.org/10.1007/s10552-019-01193-z [DOI: 10.1007/s10552-019-01193-z]
  20. Dandamudi A, Tommie J, Nommsen-Rivers L, Couch S (2018) Dietary patterns and breast cancer risk: a systematic review. Anticancer Res 38:3209–22. https://doi.org/10.21873/anticanres.12586 [DOI: 10.21873/anticanres.12586]
  21. Dinu M, Abbate R, Gensini GF, Casini A, Sofi F (2017) Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr 57(17):3640–3649. https://doi.org/10.1080/10408398.2016.1138447 [DOI: 10.1080/10408398.2016.1138447]
  22. Steck SE, Murphy EA (2019) Dietary patterns and cancer risk. Nat Rev Cancer. https://doi.org/10.1038/s41568-019-0227-4 [DOI: 10.1038/s41568-019-0227-4]
  23. Nanri A, Shimazu T, Ishihara J, Takachi R, Mizoue T, Inoue M et al (2012) Reproducibility and validity of dietary patterns assessed by a food frequency questionnaire used in the 5-year follow-up survey of the Japan Public Health Center-based prospective study. J Epidemiol 2:205–215. https://doi.org/10.2188/jea.je20110087 [DOI: 10.2188/jea.je20110087]
  24. Pellatt AJ, Slattery ML, Mullany LE, Wolff RK, Pellatt DF (2016) Dietary intake alters gene expression in colon tissue: possible underlying mechanism for the influence of diet on disease. Pharm Genom 26(6):294–306. https://doi.org/10.1097/FPC.0000000000000217 [DOI: 10.1097/FPC.0000000000000217]
  25. Shokri A, Pirouzpanah S, Foroutan-Ghaznavi M, Montazeri V, Fakhrjou A, Nozad-Charoudeh H et al (2019) Dietary protein sources and tumoral overexpression of RhoA, VEGF-A and VEGFR2 genes among breast cancer patients. Genes Nutr 14(1):22. https://doi.org/10.1186/s12263-019-0645-7 [DOI: 10.1186/s12263-019-0645-7]
  26. Hardman WE, Primerano DA, Legenza MT, Morgan J, Fan J, Denvir J (2019) Dietary walnut altered gene expressions related to tumor growth, survival, and metastasis in breast cancer patients: a pilot clinical trial. Nutr Res 66:82–94. https://doi.org/10.1016/j.nutres.2019.03.004 [DOI: 10.1016/j.nutres.2019.03.004]
  27. Bouchard-Mercier A, Paradis AM, Rudkowska I, Lemieux S, Couture P, Vohl MC (2013) Associations between dietary patterns and gene expression profiles of healthy men and women: a cross-sectional study. Nutr J 12:24. https://doi.org/10.1186/1475-2891-12-24 [DOI: 10.1186/1475-2891-12-24]
  28. Christensen JJ, Ulven SM, Thoresen M, Westerman K, Holven KB, Andersen LF (2020) Associations between dietary patterns and gene expression pattern in peripheral blood mononuclear cells: a cross-sectional study. Nutr Metab Cardiovasc Dis. https://doi.org/10.1016/j.numecd.2020.06.018 [DOI: 10.1016/j.numecd.2020.06.018]
  29. Asemani S, Montazeri V, Foroutan-Ghaznavi M, Pirouzpanah S-S, Baradaran B, Jafari S et al (2020) Dietary patterns and relative expression levels of PPAR-γ, VEGF-A, and HIF-1α genes in benign breast diseases: a case-control and consecutive case-series designs. Br J Nutr 124:832–843. https://doi.org/10.1017/S0007114520001737 [DOI: 10.1017/S0007114520001737]
  30. Dales J-P, Garcia S, Meunier-Carpentier S, Andraca-Meyer L, Haddad O, Lavaut M-N et al (2005) Overexpression of hypoxia-inducible factor HIF-1a predicts early relapse in breast cancer: retrospective study in a series of 745 patients. Int J Cancer 116(5):734–739. https://doi.org/10.1002/ijc.20984 [DOI: 10.1002/ijc.20984]
  31. Hair JF, Black WC, Babin BJ, Anderson RE (2010) Exploratory factor analysis. In: Hair JF, Black WC, Babin BJ, Anderson RE (eds) Multivariate data analysis: global edition, 7th edn. Pearson Higher Education, Upper Saddle River, pp 89–149
  32. Pirouzpanah S, Varshosaz P, Fakhrjou A, Montazeri V (2019) The contribution of dietary and plasma folate and cobalamin to levels of angiopoietin-1, angiopoietin-2 and Tie-2 receptors depend on vascular endothelial growth factor status of primary breast cancer patients. Sci Rep 9(1):1–18. https://doi.org/10.1038/s41598-019-51050-x [DOI: 10.1038/s41598-019-51050-x]
  33. Health topics: Body mass index–BMI. World Health Organization (2018). https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
  34. Hortobagyi GN, Connolly JL, D’Orsi CJ, Edge SB, Mittendorf EA, Rugo HS et al (2017) Breast. In: Amin MB (ed) AJCC cancer staging manual, 8th edn. American College of Surgeons, Chicago, pp 589–636 [DOI: 10.1007/978-3-319-40618-3_48]
  35. Pirouzpanah S, Taleban F-A, Sabour S, Mehdipour P, Atri M, Farrin N et al (2012) Validation of food frequency questionnaire to assess folate intake status in breast cancer patients. Razi J Med Sci 18(92):31–41
  36. Pirouzpanah S, Taleban F, Mehdipour P, Atri M, Hooshyareh-Rad A, Sabour S (2014) The biomarker-based validity of a food frequency questionnaire to assess the intake status of folate, pyridoxine and cobalamin among Iranian primary breast cancer patients. Eur J Clin Nutr 68(3):316–323. https://doi.org/10.1038/ejcn.2013.209 [DOI: 10.1038/ejcn.2013.209]
  37. Pirouzpanah S, Taleban F-A, Mehdipour P, Atri M, Foroutan-Ghaznavi M (2014) Plasma total homocysteine level in association with folate, pyridoxine, and cobalamin status among Iranian primary breast cancer patients. Nutr Cancer 66(7):1097–1108. https://doi.org/10.1080/01635581.2014.948213 [DOI: 10.1080/01635581.2014.948213]
  38. Sadeghi S, Montazeri V, Zamora-Ros R, Biparva P, Sabour S, Pirouzpanah S (2021) Food frequency questionnaire is a valid assessment tool of quercetin and kaempferol intake in Iranian breast cancer patients according to plasma biomarkers. Nutr Res. https://doi.org/10.1016/j.nutres.2021.06.004 [DOI: 10.1016/j.nutres.2021.06.004]
  39. Ghaffarpour M, Houshiar-Rad A, Kianfar H (1999) The manual for household measures, cooking yields factors and edible portion of foods. Nashre Olume Keshavarzy, Tehran, p 213
  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262 [DOI: 10.1006/meth.2001.1262]
  41. Chang Y-J, Hou Y-C, Chen L-J, Wu J-H, Wu C-C, Chang Y-J et al (2017) Is vegetarian diet associated with a lower risk of breast cancer in Taiwanese women? BMC Public Health 17(1):800–809. https://doi.org/10.1186/s12889-017-4819-1 [DOI: 10.1186/s12889-017-4819-1]
  42. Ting P-C, Lee W-R, Huo Y-N, Hsu S-P, Lee W-S (2019) Folic acid inhibits colorectal cancer cell migration. J Nutr Biochem 63:157–164. https://doi.org/10.1016/j.jnutbio.2018.09.020 [DOI: 10.1016/j.jnutbio.2018.09.020]
  43. Hou T-C, Lin J-J, Wen H-C, Chen L-C, Hsu S-P, Lee W-S (2013) Folic acid inhibits endothelial cell migration through inhibiting the RhoA activity mediated by activating the folic acid receptor/cSrc/p190RhoGAP-signaling pathway. Biochem Pharmacol 85(3):376–384. https://doi.org/10.1016/j.bcp.2012.11.011 [DOI: 10.1016/j.bcp.2012.11.011]
  44. Zhao H-F, Wang G, Wu C-P, Zhou X-M, Wang J, Chen Z-P et al (2018) A multi-targeted natural flavonoid myricetin suppresses lamellipodia and focal adhesions formation and impedes glioblastoma cell invasiveness and abnormal motility. CNS Neurol Disord Drug Targets 17(7):557–567. https://doi.org/10.2174/1871527317666180611090006 [DOI: 10.2174/1871527317666180611090006]
  45. Lin Y-C, Tsai P-H, Lin C-Y, Cheng C-H, Lin T-H, Lee KP et al (2013) Impact of flavonoids on matrix metalloproteinase secretion and invadopodia formation in highly invasive A431-III cancer cells. PLoS ONE 8(8):e71903. https://doi.org/10.1371/journal.pone.0071903 [DOI: 10.1371/journal.pone.0071903]
  46. Kim YN, Choe SR, Cho KH, Kang J, Park CG, Lee HY (2017) Resveratrol suppresses breast cancer cell invasionn by inactivating a RhoA/YAP signaling axis. Exp Mol Med 49(2):e296. https://doi.org/10.1038/emm.2016.151 [DOI: 10.1038/emm.2016.151]
  47. Liu J-F, Lai KC, Peng S-F, Maraming P, Huang Y-P, Huang A-C et al (2018) Berberine inhibits human melanoma A375. S2 cell migration and invasion via affecting the FAK, uPA, and NF-κB signaling pathways and inhibits PLX4032 resistant A375. S2 cell migration in vitro. Molecules 23(8):2019. https://doi.org/10.3390/molecules23082019 [DOI: 10.3390/molecules23082019]
  48. Li S, Yan T, Deng R, Jiang X, Xiong H, Wang Y et al (2017) Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. Onco Targets Ther 10:4809–4819. https://doi.org/10.2147/OTT.S140886 [DOI: 10.2147/OTT.S140886]
  49. Aghajanian A, Wittchen ES, Campbell SL, Burridge K (2009) Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One 4(11):e8045. https://doi.org/10.1371/journal.pone.0008045 [DOI: 10.1371/journal.pone.0008045]
  50. Zhu W, Ma L, Yang B, Zheng Z, Chai R, Liu T et al (2016) Flavone inhibits migration through DLC1/RhoA pathway by decreasing ROS generation in breast cancer cells. In Vitro Cell Dev Biol 52(5):589–597. https://doi.org/10.1007/s11626-016-0010-8 [DOI: 10.1007/s11626-016-0010-8]
  51. Liu J-W, Kayasuga A, Nagao N, Masatsuji-Kato E, Tuzuki T, Miwa N (2003) Repressions of actin assembly and RhoA localization are involved in inhibition of tumor cell motility by lipophilic ascorbyl phosphate. Int J Oncol 23(6):1561–1567. https://doi.org/10.3892/ijo.23.6.1561 [DOI: 10.3892/ijo.23.6.1561]
  52. Zeng H, Briske-Anderson M (2005) Prolonged butyrate treatment inhibits the migration and invasion potential of HT1080 tumor cells. J Nutr 135(2):291–295. https://doi.org/10.1093/jn/135.2.291 [DOI: 10.1093/jn/135.2.291]
  53. Lin H-J, Su C-C, Lu H-F, Yang J-S, Hsu S-C, Ip S-W et al (2010) Curcumin blocks migration and invasion of mouse-rat hybrid retina ganglion cells (N18) through the inhibition of MMP-2,-9, FAK, Rho A and Rock-1 gene expression. Oncol Rep 23(3):665–670. https://doi.org/10.3892/or_00000682 [DOI: 10.3892/or_00000682]
  54. Sun K, Duan X, Cai H, Liu X, Yang Y, Li M et al (2016) Curcumin inhibits LPA-induced invasion by attenuating RhoA/ROCK/MMPs pathway in MCF7 breast cancer cells. Clin Exp Med 16(1):37–47. https://doi.org/10.1007/s10238-015-0336-7 [DOI: 10.1007/s10238-015-0336-7]
  55. Huang Z, Nan C, Wang H, Su Q, Xue W, Chen Y et al (2016) Crocetin ester improves myocardial ischemia via Rho/ROCK/NF-κB pathway. Int Immunopharmacol 38:186–193. https://doi.org/10.1016/j.intimp.2016.05.025 [DOI: 10.1016/j.intimp.2016.05.025]
  56. Li S, Qu Y, Shen X-Y, Ouyang T, Fu W-B, Luo T et al (2019) Multiple signal pathways involved in crocetin-induced apoptosis in KYSE-150 cells. Pharmacology 103(5–6):263–272. https://doi.org/10.1159/000487956 [DOI: 10.1159/000487956]
  57. Borges GA, Elias ST, Amorim B, de Lima CL, Coletta RD, Castilho RM et al (2020) Curcumin downregulates the PI3K–AKT–mTOR pathway and inhibits growth and progression in head and neck cancer cells. Phytother Res. https://doi.org/10.1002/ptr.6780 [DOI: 10.1002/ptr.6780]
  58. Bao H, Chen J, Li F, Zeng X, Liu X (2020) Relationship between PI3K/mTOR/RhoA pathway-regulated cytoskeletal rearrangements and phagocytic capacity of macrophages. Braz J Med Biol Res 53(7):1–9. https://doi.org/10.1590/1414-431X20209207 [DOI: 10.1590/1414-431X20209207]
  59. Yao J, Gao P, Xu Y, Li Z (2016) α-TEA inhibits the growth and motility of human colon cancer cells via targeting RhoA/ROCK signaling. Mol Med Rep 14(3):2534–2540. https://doi.org/10.3892/mmr.2016.5525 [DOI: 10.3892/mmr.2016.5525]
  60. Munteanu A, Ricciarelli R, Massone S, Zingg JM (2007) Modulation of proteasome activity by vitamin E in THP-1 monocytes. IUBMB Life 59(12):771–780. https://doi.org/10.1080/15216540701697420 [DOI: 10.1080/15216540701697420]
  61. Huang YS, Wang SM, Hsu KL, Tseng YZ, Wu JC (2007) Mechanism of oleic acid-induced myofibril disassembly in rat cardiomyocytes. J Cell Biochem 102(3):638–649. https://doi.org/10.1002/jcb.21317 [DOI: 10.1002/jcb.21317]
  62. Witt W, Büttner P, Jannasch A, Matschke K, Waldow T (2014) Reversal of myofibroblastic activation by polyunsaturated fatty acids in valvular interstitial cells from aortic valves. Role of RhoA/G-actin/MRTF signalling. J Mol Cell Cardiol 74:127–138. https://doi.org/10.1016/j.yjmcc.2014.05.008 [DOI: 10.1016/j.yjmcc.2014.05.008]
  63. Schmidt S, Willers J, Riecker S, Möller K, Schuchardt JP, Hahn A (2015) Effect of omega-3 polyunsaturated fatty acids on the cytoskeleton: an open-label intervention study. Lipids Health Dis 14(1):4. https://doi.org/10.1186/1476-511X-14-4 [DOI: 10.1186/1476-511X-14-4]
  64. Nadella S, Burks J, Al-Sabban A, Inyang G, Wang J, Tucker RD et al (2018) Dietary fat stimulates pancreatic cancer growth and promotes fibrosis of the tumor microenvironment through the cholecystokinin receptor. Am J Physiol Gastrointest Liver Physiol 315(5):G699–G712. https://doi.org/10.1152/ajpgi.00123.2018 [DOI: 10.1152/ajpgi.00123.2018]
  65. Jung JI, Cho HJ, Jung YJ, Kwon SH, Her S, Choi SS et al (2015) High-fat diet-induced obesity increases lymphangiogenesis and lymph node metastasis in the B16F10 melanoma allograft model: roles of adipocytes and M2-macrophages. Int J Cancer 136(2):258–270. https://doi.org/10.1002/ijc.28983 [DOI: 10.1002/ijc.28983]
  66. Moon H, Ruelcke JE, Choi E, Sharpe LJ, Nassar ZD, Bielefeldt-Ohmann H et al (2015) Diet-induced hypercholesterolemia promotes androgen-independent prostate cancer metastasis via IQGAP1 and caveolin-1. Oncotarget 6(10):7438–7453. https://doi.org/10.18632/oncotarget.3476 [DOI: 10.18632/oncotarget.3476]
  67. Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS-O et al (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541(7635):41–45. https://doi.org/10.1038/nature20791 [DOI: 10.1038/nature20791]
  68. Garcia MC, Ray DM, Lackford B, Rubino M, Olden K, Roberts JD (2009) Arachidonic acid stimulates cell adhesion through a novel p38 MAPK-RhoA signaling pathway that involves heat shock protein 27. J Biol Chem. https://doi.org/10.1074/jbc.M109.020271 [DOI: 10.1074/jbc.M109.020271]
  69. Yamada H, Hakozaki M, Uemura A, Yamashita T (2019) Effect of fatty acids on melanogenesis and tumor cell growth in melanoma cells. J Lipid Res 60(9):1491–1502. https://doi.org/10.1194/jlr.M090712 [DOI: 10.1194/jlr.M090712]
  70. Stadler S, Nguyen CH, Schachner H, Milovanovic D, Holzner S, Brenner S et al (2017) Colon cancer cell-derived 12 (S)-HETE induces the retraction of cancer-associated fibroblast via MLC2, RHO/ROCK and Ca signalling. Cell Mol Life Sci 74(10):1907–1921. https://doi.org/10.1007/s00018-016-2441-5 [DOI: 10.1007/s00018-016-2441-5]
  71. Olivia MY, Brown JH (2015) G protein–coupled receptor and RhoA-stimulated transcriptional responses: links to inflammation, differentiation, and cell proliferation. Mol Pharmacol 88(1):171–180. https://doi.org/10.1124/mol.115.097857 [DOI: 10.1124/mol.115.097857]
  72. Hong BH, Wu CH, Yeh CT, Yen GC (2013) Invadopodia-associated proteins blockade as a novel mechanism for 6-shogaol and pterostilbene to reduce breast cancer cell motility and invasion. Mol Nutr Food Res 57(5):886–895. https://doi.org/10.1002/mnfr.201200715 [DOI: 10.1002/mnfr.201200715]
  73. Clark ES, Whigham AS, Yarbrough WG, Weaver AM (2007) Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res 67(9):4227–4235. https://doi.org/10.1158/0008-5472.CAN-06-3928 [DOI: 10.1158/0008-5472.CAN-06-3928]
  74. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27. https://doi.org/10.1111/j.1742-4658.2010.07919.x [DOI: 10.1111/j.1742-4658.2010.07919.x]
  75. Chou Y-C, Chang M-Y, Wang M-J, Yu F-S, Liu H-C, Harnod T et al (2015) PEITC inhibits human brain glioblastoma GBM 8401 cell migration and invasion through the inhibition of uPA, Rho A, and Ras with inhibition of MMP-2,-7 and-9 gene expression. Oncol Rep 34(5):2489–2496. https://doi.org/10.3892/or.2015.4260 [DOI: 10.3892/or.2015.4260]
  76. Lai K-C, Hsu S-C, Kuo C-L, Ip S-W, Yang J-S, Hsu Y-M et al (2010) Phenethyl isothiocyanate inhibited tumor migration and invasion via suppressing multiple signal transduction pathways in human colon cancer HT29 cells. J Agric Food Chem 58(20):11148–11155. https://doi.org/10.1021/jf102384n [DOI: 10.1021/jf102384n]
  77. Yang M-D, Lai K-C, Lai T-Y, Hsu S-C, Kuo C-L, Yu C-S et al (2010) Phenethyl isothiocyanate inhibits migration and invasion of human gastric cancer AGS cells through suppressing MAPK and NF-κB signal pathways. Anticancer Res 30(6):2135–2143 [PMID: 20651362]
  78. Ho C-C, Lai K-C, Hsu S-C, Kuo C-L, Ma C-Y, Lin M-L et al (2011) Benzyl isothiocyanate (BITC) inhibits migration and invasion of human gastric cancer AGS cells via suppressing ERK signal pathways. Hum Exp Toxicol 30(4):296–306. https://doi.org/10.1177/0960327110371991 [DOI: 10.1177/0960327110371991]
  79. Martín-Montalvo A, Villalba JM, Navas P, De Cabo R (2011) NRF2, cancer and calorie restriction. Oncogene 30(5):505–520. https://doi.org/10.1038/onc.2010.492 [DOI: 10.1038/onc.2010.492]
  80. Zhang C, Wang H-J, Bao Q-C, Wang L, Guo T-K, Chen W-L et al (2016) NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget 7(45):73593–73606. https://doi.org/10.18632/oncotarget.12435 [DOI: 10.18632/oncotarget.12435]
  81. Li M, Liu Y-P, Zhang X-H, Geng C-Z, Li Z-H (2013) Relationship of RhoA signaling activity with ezrin expression and its significance in the prognosis for breast cancer patients. Chin Med J 126(2):242–247 [PMID: 23324271]
  82. Danesh FR, Sadeghi MM, Amro N, Philips C, Zeng L, Lin S et al (2002) 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/p21 signaling pathway: implications for diabetic nephropathy. Proc Natl Acad Sci 99(12):8301–8305. https://doi.org/10.1073/pnas.122228799 [DOI: 10.1073/pnas.122228799]
  83. Christopoulos PF, Msaouel P, Koutsilieris M (2015) The role of the insulin-like growth factor-1 system in breast cancer. Mol Cancer 14(1):43. https://doi.org/10.1186/s12943-015-0291-7 [DOI: 10.1186/s12943-015-0291-7]
  84. Flores-García MK, Mérida-Ortega Á, Denova-Gutiérrez E, López-Carrillo L (2020) Dietary patterns and breast cancer risk in women from northern Mexico. Nutr Cancer. https://doi.org/10.1080/01635581.2020.1860241 [DOI: 10.1080/01635581.2020.1860241]
  85. Daubriac J, Han S, Grahovac J, Smith E, Hosein A, Buchanan M et al (2018) The crosstalk between breast carcinoma-associated fibroblasts and cancer cells promotes RhoA-dependent invasion via IGF-1 and PAI-1. Oncotarget 9(12):10375. https://doi.org/10.18632/oncotarget.23735 [DOI: 10.18632/oncotarget.23735]
  86. Zhang Y, Moerkens M, Ramaiahgari S, de Bont H, Price L, Meerman J et al (2011) Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes. Breast Cancer Res 13(3):R52. https://doi.org/10.1186/bcr2883 [DOI: 10.1186/bcr2883]
  87. Zahradka P, Storie B, Wright B (2009) IGF-1 receptor transactivation mediates Src-dependent cortactin phosphorylation in response to angiotensin II. Can J Physiol Pharmacol 87(10):805–812. https://doi.org/10.1139/Y09-052 [DOI: 10.1139/Y09-052]
  88. Llaverias G, Escolà-Gil JC, Lerma E, Julve J, Pons C, Cabré A et al (2013) Phytosterols inhibit the tumor growth and lipoprotein oxidizability induced by a high-fat diet in mice with inherited breast cancer. J Nutr Biochem 24(1):39–48. https://doi.org/10.1016/j.jnutbio.2012.01.007 [DOI: 10.1016/j.jnutbio.2012.01.007]
  89. Ju YH, Clausen LM, Allred KF, Almada AL, Helferich WG (2004) β-sitosterol, β-sitosterol glucoside, and a mixture of β-sitosterol and β-sitosterol glucoside modulate the growth of estrogen-responsive breast cancer cells in vitro and in ovariectomized athymic mice. J Nutr 134(5):1145–1151. https://doi.org/10.1093/jn/134.5.1145 [DOI: 10.1093/jn/134.5.1145]
  90. Buja A, Pierbon M, Lago L, Grotto G, Baldo V (2020) Breast cancer primary prevention and diet: an umbrella review. Int J Environ Res Public Health 17(13):4731. https://doi.org/10.3390/ijerph17134731 [DOI: 10.3390/ijerph17134731]
  91. Liu X, Lv K (2013) Cruciferous vegetables intake is inversely associated with risk of breast cancer: a meta-analysis. Breast 22(3):309–313. https://doi.org/10.1016/j.breast.2012.07.013 [DOI: 10.1016/j.breast.2012.07.013]
  92. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP et al (2014) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg 12(12):1495–1499. https://doi.org/10.1016/j.ijsu.2014.07.013 [DOI: 10.1016/j.ijsu.2014.07.013]

Grants

  1. 94-01-84-10880/Shiraz University of Medical Sciences
  2. Stem Cell Research Center: 5/D/962552/Tabriz University of Medical Sciences

MeSH Term

Breast Neoplasms
Case-Control Studies
Diet
Feeding Behavior
Female
Fruit
Humans
Risk Factors
Vegetables

Word Cloud

Created with Highcharts 10.0.0genesRhoA95%CIBrCaROCKpatternspro-metastaticpatternOR = 00cancerdietarylevelsexpressionusingDietaryassociatedMetastasisbreastoverexpressionhealthyprimaryfoodAdherence2608-0highestadherenceoddsmeatPURPOSE:majorleadingcausemortalityfemaleCellularmotilitypathologicalprocessmetastasisremarkedcortactinCTTNRashomologfamilymember-ARho-associatedkinase Theirbalance is responsiblefor upholdingintegrityepithelialcelljunctionsstudyaimedexploreassociationsposteriorithe expressionMETHODS:consecutivecaseseries215eligiblewomennewlydiagnosedhistologicallyconfirmed non-metastaticstageI-IIIArecruitedHospitalsTabrizNorthwestern Iran2015-2017tumoralquantifiedreal-timereversetranscription-polymerasechainreactiondataassessmentcarriedvalidatedfrequencyquestionnaireRESULTS:ThreeidentifiedprincipalcomponentanalysisKMO = 0699"vegan"vegetablesfruitslegumesnutsseedswholegrainsinversely2407-07987addition"prudent"spicesseafooddairyvegetableoilsdecreasedoverexpressions842909-095"Western"processedhydrogenatedfatfastrefinedcerealssweetssoftdrinksriskfactorOR = 315112-885CONCLUSION:significantlydownregulationFindingsprovidednewimplicationsadvancenutrigenomicknowledgepreventof over-regulationsthe primaryassociationBreastCortactin

Similar Articles

Cited By (1)