Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response.

Zhen Zhang, Zi-Xian Wang, Yan-Xing Chen, Hao-Xiang Wu, Ling Yin, Qi Zhao, Hui-Yan Luo, Zhao-Lei Zeng, Miao-Zhen Qiu, Rui-Hua Xu
Author Information
  1. Zhen Zhang: Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
  2. Zi-Xian Wang: Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
  3. Yan-Xing Chen: Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
  4. Hao-Xiang Wu: Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
  5. Ling Yin: Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
  6. Qi Zhao: Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
  7. Hui-Yan Luo: Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
  8. Zhao-Lei Zeng: Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
  9. Miao-Zhen Qiu: Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China. qiumzh@sysucc.org.cn.
  10. Rui-Hua Xu: Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China. xurh@sysucc.org.cn.

Abstract

BACKGROUND: Although immune checkpoint inhibitor (ICI) is regarded as a breakthrough in cancer therapy, only a limited fraction of patients benefit from it. Cancer stemness can be the potential culprit in ICI resistance, but direct clinical evidence is lacking.
METHODS: Publicly available scRNA-Seq datasets derived from ICI-treated patients were collected and analyzed to elucidate the association between cancer stemness and ICI response. A novel stemness signature (Stem.Sig) was developed and validated using large-scale pan-cancer data, including 34 scRNA-Seq datasets, The Cancer Genome Atlas (TCGA) pan-cancer cohort, and 10 ICI transcriptomic cohorts. The therapeutic value of Stem.Sig genes was further explored using 17 CRISPR datasets that screened potential immunotherapy targets.
RESULTS: Cancer stemness, as evaluated by CytoTRACE, was found to be significantly associated with ICI resistance in melanoma and basal cell carcinoma (both P < 0.001). Significantly negative association was found between Stem.Sig and anti-tumor immunity, while positive correlations were detected between Stem.Sig and intra-tumoral heterogenicity (ITH) / total mutational burden (TMB). Based on this signature, machine learning model predicted ICI response with an AUC of 0.71 in both validation and testing set. Remarkably, compared with previous well-established signatures, Stem.Sig achieved better predictive performance across multiple cancers. Moreover, we generated a gene list ranked by the average effect of each gene to enhance tumor immune response after genetic knockout across different CRISPR datasets. Then we matched Stem.Sig to this gene list and found Stem.Sig significantly enriched 3% top-ranked genes from the list (P = 0.03), including EMC3, BECN1, VPS35, PCBP2, VPS29, PSMF1, GCLC, KXD1, SPRR1B, PTMA, YBX1, CYP27B1, NACA, PPP1CA, TCEB2, PIGC, NR0B2, PEX13, SERF2, and ZBTB43, which were potential therapeutic targets.
CONCLUSIONS: We revealed a robust link between cancer stemness and immunotherapy resistance and developed a promising signature, Stem.Sig, which showed increased performance in comparison to other signatures regarding ICI response prediction. This signature could serve as a competitive tool for patient selection of immunotherapy. Meanwhile, our study potentially paves the way for overcoming immune resistance by targeting stemness-associated genes.

Keywords

References

  1. Front Immunol. 2021 Nov 05;12:758288 [PMID: 34804045]
  2. Cell. 2017 Dec 14;171(7):1611-1624.e24 [PMID: 29198524]
  3. Science. 2018 Apr 20;360(6386):331-335 [PMID: 29674595]
  4. Nature. 2018 Feb 22;554(7693):544-548 [PMID: 29443960]
  5. Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9271-E9279 [PMID: 29078276]
  6. Science. 2018 Feb 16;359(6377):770-775 [PMID: 29301958]
  7. Nat Med. 2018 Mar;24(3):262-270 [PMID: 29431745]
  8. Nat Rev Clin Oncol. 2020 Apr;17(4):204-232 [PMID: 31792354]
  9. Cold Spring Harb Mol Case Stud. 2020 Apr 1;6(2): [PMID: 32054662]
  10. Eur J Cancer. 2009 Jan;45(2):228-47 [PMID: 19097774]
  11. Cell. 2018 Apr 19;173(3):624-633.e8 [PMID: 29656892]
  12. Nat Commun. 2019 May 28;10(1):2352 [PMID: 31138793]
  13. Signal Transduct Target Ther. 2020 Feb 29;5(1):11 [PMID: 32296023]
  14. Cell Rep. 2021 Jan 5;34(1):108597 [PMID: 33406434]
  15. Cell. 2017 Nov 2;171(4):934-949.e16 [PMID: 29033130]
  16. Turk J Emerg Med. 2018 Aug 07;18(3):91-93 [PMID: 30191186]
  17. J Clin Invest. 2017 Aug 1;127(8):2930-2940 [PMID: 28650338]
  18. Science. 2015 Oct 9;350(6257):207-211 [PMID: 26359337]
  19. Biostatistics. 2007 Jan;8(1):118-27 [PMID: 16632515]
  20. J Clin Oncol. 2019 Feb 1;37(4):318-327 [PMID: 30557521]
  21. Nat Med. 2019 Aug;25(8):1251-1259 [PMID: 31359002]
  22. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33839757]
  23. Science. 2017 Mar 31;355(6332): [PMID: 28360267]
  24. J Clin Oncol. 2019 Apr 20;37(12):992-1000 [PMID: 30785829]
  25. Nature. 2020 Jan;577(7791):549-555 [PMID: 31942075]
  26. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  27. Cell. 2018 Nov 1;175(4):984-997.e24 [PMID: 30388455]
  28. Nat Med. 2019 Dec;25(12):1916-1927 [PMID: 31792460]
  29. Mol Cancer Ther. 2012 Aug;11(8):1627-36 [PMID: 22844074]
  30. Int J Surg. 2024 Sep 23;: [PMID: 39311908]
  31. Cell. 2015 Jan 15;160(1-2):48-61 [PMID: 25594174]
  32. Pharmacol Ther. 2019 Nov;203:107395 [PMID: 31374225]
  33. Cancer Cell. 2019 Feb 11;35(2):238-255.e6 [PMID: 30753825]
  34. EMBO Mol Med. 2013 Mar;5(3):327-31 [PMID: 23495139]
  35. Bioinformatics. 2004 Dec 12;20(18):3710-5 [PMID: 15297299]
  36. Nat Commun. 2020 Oct 8;11(1):5084 [PMID: 33033253]
  37. Cancer Discov. 2019 Dec;9(12):1708-1719 [PMID: 31554641]
  38. Cancer Commun (Lond). 2021 Sep;41(9):803-829 [PMID: 34165252]
  39. N Engl J Med. 2012 Jun 28;366(26):2443-54 [PMID: 22658127]
  40. Cell. 2016 Mar 24;165(1):35-44 [PMID: 26997480]
  41. Nature. 2017 Aug 31;548(7669):537-542 [PMID: 28783722]
  42. Science. 2017 Jan 20;355(6322): [PMID: 28104840]
  43. Nat Commun. 2020 Apr 3;11(1):1669 [PMID: 32245950]
  44. Science. 2020 Jan 24;367(6476):405-411 [PMID: 31974247]
  45. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33212483]
  46. Nat Biotechnol. 2020 Jun;38(6):675-678 [PMID: 32444850]
  47. Cell Rep. 2017 Oct 31;21(5):1399-1410 [PMID: 29091775]
  48. Trends Cell Biol. 2018 Jul;28(7):551-559 [PMID: 29555207]
  49. Nature. 2016 Nov 10;539(7628):309-313 [PMID: 27806376]
  50. J Hematol Oncol. 2020 Mar 18;13(1):22 [PMID: 32188475]
  51. Cancer Cell. 2019 Oct 14;36(4):418-430.e6 [PMID: 31588021]
  52. Nat Commun. 2020 Jan 24;11(1):496 [PMID: 31980621]
  53. Nat Med. 2018 Sep;24(9):1449-1458 [PMID: 30013197]
  54. Cancer Discov. 2019 Apr;9(4):510-525 [PMID: 30622105]
  55. NPJ Genom Med. 2021 Feb 4;6(1):7 [PMID: 33542239]
  56. Nature. 2022 Jan;601(7894):623-629 [PMID: 34875674]
  57. Science. 2016 Apr 8;352(6282):227-31 [PMID: 26966191]
  58. Nat Med. 2018 Dec;24(12):1867-1876 [PMID: 30523328]
  59. Cancer Discov. 2020 Feb;10(2):232-253 [PMID: 31699795]
  60. Nature. 2017 Jul 27;547(7664):413-418 [PMID: 28723893]
  61. Cell. 2018 May 3;173(4):879-893.e13 [PMID: 29681456]
  62. Nucleic Acids Res. 2021 Jan 8;49(D1):D1420-D1430 [PMID: 33179754]
  63. Cancer Discov. 2012 May;2(5):401-4 [PMID: 22588877]
  64. Genome Med. 2022 Apr 29;14(1):45 [PMID: 35488273]
  65. Cell Rep. 2019 Sep 10;28(11):2784-2794.e5 [PMID: 31509742]
  66. PLoS Med. 2017 May 26;14(5):e1002309 [PMID: 28552987]
  67. Immunity. 2018 Apr 17;48(4):812-830.e14 [PMID: 29628290]
  68. Cancer Discov. 2021 Apr;11(4):838-857 [PMID: 33811120]
  69. Cancer Med. 2019 Jun;8(6):3072-3085 [PMID: 31033233]
  70. Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):9020-9029 [PMID: 30996127]
  71. Cytokine Growth Factor Rev. 2015 Feb;26(1):1-6 [PMID: 24933439]
  72. PLoS One. 2018 Nov 1;13(11):e0206785 [PMID: 30383866]
  73. Nat Commun. 2018 Sep 24;9(1):3868 [PMID: 30250229]
  74. Cell. 2019 Aug 8;178(4):835-849.e21 [PMID: 31327527]
  75. Biom J. 2005 Aug;47(4):458-72 [PMID: 16161804]
  76. Nat Biotechnol. 2020 Mar;38(3):333-342 [PMID: 31932730]
  77. Genome Med. 2020 Feb 26;12(1):21 [PMID: 32102694]
  78. Sci Immunol. 2018 May 18;3(23): [PMID: 29776993]
  79. Cell. 2020 Apr 16;181(2):442-459.e29 [PMID: 32302573]
  80. Semin Cancer Biol. 2020 Oct;65:140-154 [PMID: 31927131]
  81. Genome Biol. 2016 Dec 1;17(1):249 [PMID: 27908289]
  82. Bioinformatics. 2020 Jun 1;36(11):3585-3587 [PMID: 32105316]
  83. Cell Res. 2019 Sep;29(9):725-738 [PMID: 31273297]
  84. Nat Med. 2020 Jun;26(6):909-918 [PMID: 32472114]
  85. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  86. Semin Cancer Biol. 2018 Dec;53:189-200 [PMID: 30261276]
  87. Nature. 2020 Oct;586(7827):120-126 [PMID: 32968282]
  88. Nature. 2019 Aug;572(7767):74-79 [PMID: 31341285]
  89. Genome Med. 2021 May 11;13(1):82 [PMID: 33975634]
  90. Stem Cell Reports. 2020 Feb 11;14(2):338-350 [PMID: 32004492]
  91. Exp Mol Med. 2018 Aug 7;50(8):1-14 [PMID: 30089861]
  92. Nat Med. 2018 Aug;24(8):1277-1289 [PMID: 29988129]
  93. Cancer Immunol Res. 2020 Nov;8(11):1365-1380 [PMID: 32917656]
  94. Sci Signal. 2013 Apr 02;6(269):pl1 [PMID: 23550210]
  95. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  96. Int J Mol Sci. 2020 Nov 18;21(22): [PMID: 33217970]
  97. Genome Med. 2018 Jul 24;10(1):57 [PMID: 30041684]
  98. Cell Rep. 2019 May 7;27(6):1934-1947.e5 [PMID: 31067475]
  99. Immunity. 2019 May 21;50(5):1317-1334.e10 [PMID: 30979687]
  100. Nat Rev Cancer. 2021 Aug;21(8):526-536 [PMID: 34103704]
  101. J Immunother Cancer. 2020 Oct;8(2): [PMID: 33115943]
  102. Nat Med. 2019 Mar;25(3):462-469 [PMID: 30742119]
  103. Cell. 2019 Jul 25;178(3):585-599.e15 [PMID: 31303383]
  104. BMC Med. 2021 Feb 2;19(1):26 [PMID: 33526018]
  105. Nat Med. 2018 Oct;24(10):1545-1549 [PMID: 30127394]

MeSH Term

Biomarkers, Tumor
Carrier Proteins
Humans
Immunotherapy
Intracellular Signaling Peptides and Proteins
Neoplasms
RNA
RNA-Binding Proteins
Sequence Analysis, RNA
Exome Sequencing

Chemicals

Biomarkers, Tumor
Carrier Proteins
Intracellular Signaling Peptides and Proteins
KXD1 protein, human
PCBP2 protein, human
RNA-Binding Proteins
SERF2 protein, human
RNA

Word Cloud

Created with Highcharts 10.0.0StemSigICIstemnessresponsesignatureresistancedatasetsimmunotherapyimmunecancerCancerpotentialpan-cancerdatagenesfound0genelistcheckpointtherapypatientsscRNA-SeqassociationdevelopedusingincludingtherapeuticCRISPRtargetssignificantlyPsignaturesperformanceacrossanalysissequencingBACKGROUND:AlthoughinhibitorregardedbreakthroughlimitedfractionbenefitcanculpritdirectclinicalevidencelackingMETHODS:PubliclyavailablederivedICI-treatedcollectedanalyzedelucidatenovelvalidatedlarge-scale34GenomeAtlasTCGAcohort10transcriptomiccohortsvalueexplored17screenedRESULTS:evaluatedCytoTRACEassociatedmelanomabasalcellcarcinoma<001Significantlynegativeanti-tumorimmunitypositivecorrelationsdetectedintra-tumoralheterogenicityITH/totalmutationalburdenTMBBasedmachinelearningmodelpredictedAUC71validationtestingsetRemarkablycomparedpreviouswell-establishedachievedbetterpredictivemultiplecancersMoreovergeneratedrankedaverageeffectenhancetumorgeneticknockoutdifferentmatchedenriched3%top-ranked=03EMC3BECN1VPS35PCBP2VPS29PSMF1GCLCKXD1SPRR1BPTMAYBX1CYP27B1NACAPPP1CATCEB2PIGCNR0B2PEX13SERF2ZBTB43CONCLUSIONS:revealedrobustlinkpromisingshowedincreasedcomparisonregardingpredictionservecompetitivetoolpatientselectionMeanwhilestudypotentiallypaveswayovercomingtargetingstemness-associatedIntegratedsingle-cellbulkRNArevealspredictingBigImmunePan-cancerSingle-cellStemness

Similar Articles

Cited By