Electronic transitions and ESIPT kinetics of the thienyl-3-hydroxychromone nucleobase surrogate in DNA duplexes: a DFT/MD-TDDFT study.

Alain Sougnabé, Daniel Lissouck, Fabien Fontaine-Vive, Mama Nsangou, Yves Mély, Alain Burger, Cyril A Kenfack
Author Information
  1. Alain Sougnabé: Laboratoire d'Optique et Applications, Centre de Physique Atomique Moléculaire et Optique Quantique, Faculté des Sciences Université de Douala B. P. 8580 Douala Cameroon ckenf@yahoo.com.
  2. Daniel Lissouck: Laboratoire d'Optique et Applications, Centre de Physique Atomique Moléculaire et Optique Quantique, Faculté des Sciences Université de Douala B. P. 8580 Douala Cameroon ckenf@yahoo.com.
  3. Fabien Fontaine-Vive: Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, Parc Valrose 06108 Nice Cedex 2 France.
  4. Mama Nsangou: Département de Physique, Faculté des Sciences Physiques, Ecole Normale Supérieure de Maroua, Université de Maroua Cameroon.
  5. Yves Mély: Laboratoire de Bioimagerie et Pathologies, UMR 7021 du CNRS, Faculté de Pharmacie Faculté de Pharmacie, Université de Strasbourg 74, Route du Rhin 67401 Illkirch Cedex France. ORCID
  6. Alain Burger: Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, CNRS, Parc Valrose 06108 Nice Cedex 2 France. ORCID
  7. Cyril A Kenfack: Laboratoire d'Optique et Applications, Centre de Physique Atomique Moléculaire et Optique Quantique, Faculté des Sciences Université de Douala B. P. 8580 Douala Cameroon ckenf@yahoo.com. ORCID

Abstract

The fluorescent nucleobase surrogate M (2-thienyl-3-hydroxychromone fluorophore) when imbedded in DNA opposite an abasic site exhibits a two colour response highly sensitive to environment changes and base composition. Its two colour emission originates from an excited state intramolecular proton transfer (ESIPT), which converts the excited normal N* form into its T* tautomer. To get deeper insight on the spectroscopic properties of M in DNA duplexes, quantum chemical calculations were performed on M stacked with different base pairs in model trimers extracted from MD simulations. The photophysics of M in duplexes appeared to be governed by stacking interactions as well as charge and hole transfer. Indeed, stacking of M in DNA screens M from H-bonding with water molecules, which favours ESIPT and thus, the emission of the T* form. With A and T flanking bases, the electronic densities in the frontier MOs were localized on M, in line with its effective absorption and emission. In addition, reduction of the free rotation between the thienyl and chromone groups together with the shielding of the dye from water molecules largely explain its enhanced quantum yield in comparison to the free M in solution. By contrast, the localisation of the electron density on the flanking G residues in the ground state and the energetically favorable hole transfer from M to G in the excited state explains the reduced quantum yield of M sandwiched between CG pairs. Finally, the much higher brightness of M as compared to 2-aminopurine when flanked by A and T residues could be related to the much stronger oscillator strength of its S → S transition and the ineffective charge transfer from M to A or T residues.

References

  1. J Am Chem Soc. 2017 Feb 15;139(6):2520-2528 [PMID: 28112929]
  2. Photochem Photobiol Sci. 2009 Nov;8(11):1583-9 [PMID: 19862417]
  3. J Chem Phys. 2004 Jul 22;121(4):1736-43 [PMID: 15260723]
  4. Chemistry. 2014 Feb 10;20(7):1998-2009 [PMID: 24435817]
  5. J Phys Chem B. 2017 Dec 21;121(50):11249-11261 [PMID: 29172512]
  6. J Am Chem Soc. 2012 Jun 20;134(24):10209-13 [PMID: 22591455]
  7. J Phys Chem A. 2006 Jul 27;110(29):9200-11 [PMID: 16854034]
  8. J Chem Theory Comput. 2009 Aug 11;5(8):1959-67 [PMID: 26613139]
  9. J Am Chem Soc. 2005 Jul 27;127(29):10160-1 [PMID: 16028914]
  10. PLoS One. 2014 Jun 12;9(6):e100007 [PMID: 24925085]
  11. J Mol Recognit. 2002 Nov-Dec;15(6):377-92 [PMID: 12501158]
  12. J Chem Phys. 2007 Nov 14;127(18):184104 [PMID: 18020627]
  13. Chem Soc Rev. 2013 Feb 7;42(3):1379-408 [PMID: 23169387]
  14. Sci Rep. 2016 Feb 24;6:22099 [PMID: 26905305]
  15. Proteins. 2004 May 1;55(2):383-94 [PMID: 15048829]
  16. J Chem Theory Comput. 2009 Sep 8;5(9):2420-35 [PMID: 26616623]
  17. Phys Chem Chem Phys. 2012 Sep 28;14(36):12496-504 [PMID: 22700035]
  18. Nucleic Acids Res. 2009 Feb;37(3):e25 [PMID: 19151084]
  19. Phys Chem Chem Phys. 2012 Jul 7;14(25):8910-8 [PMID: 22641242]
  20. Nat Chem. 2017 Nov;9(11):1043-1055 [PMID: 29064490]
  21. Chem Rev. 2010 Mar 10;110(3):1642-62 [PMID: 20214403]
  22. J Org Chem. 2016 Nov 18;81(22):10733-10741 [PMID: 27723328]
  23. Nucleic Acids Res. 2013 May;41(9):5036-48 [PMID: 23511968]
  24. Nucleic Acids Res. 2008 Feb;36(3):885-96 [PMID: 18086707]
  25. Phys Chem Chem Phys. 2012 Jul 7;14(25):8866-77 [PMID: 22596076]
  26. Nucleic Acids Res. 2005 Feb 17;33(3):1031-9 [PMID: 15718302]
  27. Chem Rev. 2010 May 12;110(5):2579-619 [PMID: 20205430]
  28. Nat Chem. 2014 Nov;6(11):989-93 [PMID: 25343604]
  29. J Comput Chem. 2006 Nov 30;27(15):1787-99 [PMID: 16955487]
  30. J Phys Chem B. 2008 Aug 14;112(32):9736-45 [PMID: 18646799]
  31. Biochemistry. 2002 Nov 5;41(44):13152-61 [PMID: 12403616]
  32. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W240-6 [PMID: 19474339]
  33. J Phys Chem B. 2008 Sep 25;112(38):12050-5 [PMID: 18767771]
  34. Q Rev Biophys. 2010 May;43(2):159-83 [PMID: 20478079]
  35. Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305 [PMID: 16240044]
  36. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):37-41 [PMID: 11120885]

Word Cloud

Created with Highcharts 10.0.0MDNAtransferemissionexcitedstateESIPTquantumTresiduesnucleobasesurrogatetwocolourbaseformT*duplexespairsstackingchargeholewatermoleculesflankingfreeyieldGmuchSfluorescent2-thienyl-3-hydroxychromonefluorophoreimbeddedoppositeabasicsiteexhibitsresponsehighlysensitiveenvironmentchangescompositionoriginatesintramolecularprotonconvertsnormalN*tautomergetdeeperinsightspectroscopicpropertieschemicalcalculationsperformedstackeddifferentmodeltrimersextractedMDsimulationsphotophysicsappearedgovernedinteractionswellIndeedscreensH-bondingfavoursthusbaseselectronicdensitiesfrontierMOslocalizedlineeffectiveabsorptionadditionreductionrotationthienylchromonegroupstogethershieldingdyelargelyexplainenhancedcomparisonsolutioncontrastlocalisationelectrondensitygroundenergeticallyfavorableexplainsreducedsandwichedCGFinallyhigherbrightnesscompared2-aminopurineflankedrelatedstrongeroscillatorstrengthtransitionineffectiveElectronictransitionskineticsthienyl-3-hydroxychromoneduplexes:DFT/MD-TDDFTstudy

Similar Articles

Cited By