A meta-analysis of impacts of immune response and infection on oxidative status in vertebrates.

David Costantini
Author Information
  1. David Costantini: Unité Physiologie Moléculaire et Adaptation, UMR 7221, Muséum National d'Histoire Naturelle, CNRS, CP32, 57 rue Cuvier 75005 Paris, France.

Abstract

Inferring from patterns observed in biomedical research, ecoimmunological theory predicts that oxidative stress is a ubiquitous physiological cost that contributes to generating variation in immune function between individuals or species. This prediction is, however, often challenged by empirical studies testing the relationship between immune response or infection and oxidative status markers. This points out the importance of combining ecological immunology and oxidative stress ecology to further our understanding of the proximate causes and fitness consequences of individual variation in health, and adaptability to natural and anthropogenic environmental changes. I reviewed evidence and performed phylogenetic meta-analyses of changes in oxidative status markers owing to either injection of an antigen or infection in captive and free-living vertebrates (141 studies, 1262 effect sizes, 97 species). The dataset was dominated by studies on fish, birds and mammals, which provided 95.8% of effect sizes. Both antigen injection and parasite exposure were associated with changes of oxidative status. There were significant effects of taxonomic class and experimental environment (captivity vs. wild). In contrast with my predictions, age category (young vs. adult), study design (correlational vs. experimental) and proxies of pace of life (clutch size, litter size, and body mass; for birds and mammals only) were negligible in this dataset. Several methodological aspects (type of immunostimulant, laboratory assay, tissue analysed) showed significant effects on both strength and direction of effect. My results suggest that alterations of oxidative status are a widespread consequence of immune function across vertebrates. However, this work also identified heterogeneity in strength and direction of effect sizes, which suggests that immune function does not necessarily result in oxidative stress. Finally, this work identifies methodological caveats that might be relevant for the interpretation and comparability of results and for the application in conservation programs.

Keywords

References

  1. J Comp Physiol B. 2019 Feb;189(1):143-152 [PMID: 30488104]
  2. J Comp Physiol B. 2016 Oct;186(7):867-77 [PMID: 27146148]
  3. Dis Aquat Organ. 2005 Jan 25;63(1):77-84 [PMID: 15759803]
  4. Fish Physiol Biochem. 2014 Apr;40(2):347-54 [PMID: 23974670]
  5. Malar J. 2016 Nov 4;15(1):531 [PMID: 27809847]
  6. PLoS One. 2016 Sep 28;11(9):e0163971 [PMID: 27682987]
  7. Comp Biochem Physiol A Mol Integr Physiol. 2006 Sep;145(1):137-42 [PMID: 16872854]
  8. Vet Res. 2013 Feb 11;44:7 [PMID: 23398909]
  9. Ecol Lett. 2019 Oct;22(10):1709-1722 [PMID: 31321874]
  10. Nutrients. 2018 Oct 17;10(10): [PMID: 30336639]
  11. J Exp Biol. 2020 Mar 16;223(Pt 6): [PMID: 32054680]
  12. J Exp Biol. 2019 Jul 2;222(Pt 13): [PMID: 31266782]
  13. Fish Shellfish Immunol. 2020 Oct;105:164-176 [PMID: 32687879]
  14. Int J Parasitol Parasites Wildl. 2019 Sep 28;10:241-251 [PMID: 31667087]
  15. J Exp Biol. 2019 Jun 17;222(Pt 12): [PMID: 31138632]
  16. Fish Shellfish Immunol. 2015 May;44(1):307-15 [PMID: 25725402]
  17. J Anim Ecol. 2007 Nov;76(6):1161-8 [PMID: 17922712]
  18. Proc Biol Sci. 2009 Mar 22;276(1659):1093-100 [PMID: 19129122]
  19. Sci Rep. 2017 May 9;7(1):1599 [PMID: 28487518]
  20. Dev Comp Immunol. 2021 Jun;119:104017 [PMID: 33476670]
  21. J Bioenerg Biomembr. 1997 Jun;29(3):241-9 [PMID: 9298709]
  22. Fish Shellfish Immunol. 2009 Aug;27(2):336-40 [PMID: 19540347]
  23. BMC Vet Res. 2011 Jul 08;7:34 [PMID: 21740554]
  24. J Evol Biol. 2016 Oct;29(10):1882-1904 [PMID: 27726237]
  25. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8841-8 [PMID: 10922044]
  26. Fish Shellfish Immunol. 2017 Apr;63:334-343 [PMID: 28232278]
  27. J Fish Dis. 2020 Dec;43(12):1505-1517 [PMID: 32984991]
  28. Ecotoxicology. 2016 Oct;25(8):1478-1499 [PMID: 27475951]
  29. Philos Trans R Soc Lond B Biol Sci. 2008 Jan 27;363(1490):321-39 [PMID: 17638690]
  30. Heliyon. 2020 Mar 29;6(3):e03570 [PMID: 32258456]
  31. Springerplus. 2013 Mar 09;2(1):94 [PMID: 23667798]
  32. Front Immunol. 2017 Aug 11;8:957 [PMID: 28848557]
  33. Evolution. 2010 Aug;64(8):2397-407 [PMID: 20298461]
  34. J Exp Med. 2000 Jul 17;192(2):237-48 [PMID: 10899910]
  35. PLoS One. 2015 Aug 14;10(8):e0133967 [PMID: 26275171]
  36. Fish Shellfish Immunol. 2020 Feb;97:194-203 [PMID: 31830567]
  37. Physiol Biochem Zool. 2019 Jan/Feb;92(1):12-23 [PMID: 30403915]
  38. Nutrients. 2020 Jan 16;12(1): [PMID: 31963293]
  39. Ecol Evol. 2016 Mar 21;6(9):2833-42 [PMID: 27217942]
  40. Arch Virol. 2017 Apr;162(4):907-917 [PMID: 28039563]
  41. PLoS One. 2015 Mar 27;10(3):e0122421 [PMID: 25815888]
  42. Fish Shellfish Immunol. 2020 Feb;97:351-358 [PMID: 31874297]
  43. J Adv Vet Anim Res. 2020 Aug 25;7(3):537-545 [PMID: 33005681]
  44. Dev Comp Immunol. 2019 Feb;91:8-16 [PMID: 30267738]
  45. Vet Microbiol. 2020 Feb;241:108528 [PMID: 31882365]
  46. PLoS One. 2011;6(7):e22221 [PMID: 21765955]
  47. J Exp Biol. 2018 Jul 1;221(Pt 13): [PMID: 29967267]
  48. Aquat Toxicol. 2016 Jan;170:42-51 [PMID: 26615366]
  49. Dis Aquat Organ. 2010 Feb 17;88(3):215-24 [PMID: 20377011]
  50. Br J Nutr. 2008 Jul;100(1):102-11 [PMID: 18062828]
  51. Ticks Tick Borne Dis. 2018 Mar;9(3):720-729 [PMID: 29478884]
  52. J Exp Zool A Ecol Integr Physiol. 2021 Feb;335(2):239-249 [PMID: 33184965]
  53. Front Zool. 2015 Feb 13;12:4 [PMID: 25705242]
  54. Comp Biochem Physiol A Mol Integr Physiol. 2009 Jul;153(3):339-44 [PMID: 19303455]
  55. Parasitol Res. 2018 Jul;117(7):2043-2052 [PMID: 29744700]
  56. Comp Immunol Microbiol Infect Dis. 2014 Dec;37(5-6):299-304 [PMID: 25449998]
  57. Environ Sci Technol. 2020 May 5;54(9):5540-5549 [PMID: 32267695]
  58. Fish Shellfish Immunol. 2003 Nov;15(5):467-71 [PMID: 14550672]
  59. J Exp Biol. 2019 Mar 21;222(Pt 6): [PMID: 30770399]
  60. Fish Shellfish Immunol. 2017 Oct;69:85-89 [PMID: 28818617]
  61. Immunology. 2003 Dec;110(4):430-9 [PMID: 14632640]
  62. Fish Shellfish Immunol. 2020 Nov;106:675-684 [PMID: 32858188]
  63. Curr Zool. 2018 Feb;64(1):1-11 [PMID: 29492033]
  64. Toxicology. 2002 Dec 27;181-182:223-7 [PMID: 12505315]
  65. Fish Shellfish Immunol. 2018 Jul;78:177-186 [PMID: 29684610]
  66. Dis Aquat Organ. 2000 Sep 28;42(3):233-6 [PMID: 11104076]
  67. Sci Rep. 2018 Jul 9;8(1):10347 [PMID: 29985431]
  68. Ann N Y Acad Sci. 2021 Dec;1505(1):178-190 [PMID: 33876431]
  69. Physiol Behav. 2015 Mar 15;141:127-34 [PMID: 25600467]
  70. Physiol Biochem Zool. 2021 Jan/Feb;94(1):35-49 [PMID: 33296296]
  71. Biol Open. 2019 Nov 1;8(10): [PMID: 31649120]
  72. Comp Biochem Physiol A Mol Integr Physiol. 2016 Apr;194:56-61 [PMID: 26812206]
  73. Ecol Evol. 2013 Dec;3(16):5157-66 [PMID: 24455145]
  74. Am Nat. 2007 Oct;170(4):625-35 [PMID: 17891740]
  75. Nat Rev Immunol. 2016 Oct;16(10):626-38 [PMID: 27546235]
  76. Immunity. 2020 Jul 14;53(1):19-25 [PMID: 32610079]
  77. Comp Biochem Physiol A Mol Integr Physiol. 2012 Nov;163(3-4):296-301 [PMID: 22885344]
  78. Fish Shellfish Immunol. 2015 Aug;45(2):689-94 [PMID: 26027759]
  79. J Anim Ecol. 2017 Oct;86(6):1483-1496 [PMID: 28884826]
  80. Trends Cancer. 2015 Nov 1;1(3):174-182 [PMID: 26618199]
  81. Dis Aquat Organ. 2011 Mar 16;94(1):17-28 [PMID: 21553565]
  82. Sci Rep. 2020 Oct 15;10(1):17384 [PMID: 33060711]
  83. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):71-83 [PMID: 18930878]
  84. Cytobios. 1998;95(380):151-60 [PMID: 10093201]
  85. J Exp Biol. 2010 Feb 1;213(3):400-7 [PMID: 20086124]
  86. Trends Immunol. 2004 Apr;25(4):165-6; author reply 167-8 [PMID: 15039040]
  87. PLoS One. 2014 Feb 04;9(2):e86747 [PMID: 24503816]
  88. J Exp Zool A Ecol Genet Physiol. 2014 Aug;321(7):376-86 [PMID: 24807828]
  89. Environ Sci Pollut Res Int. 2014 Nov;21(22):13103-17 [PMID: 24996940]
  90. Oecologia. 2017 Nov;185(3):365-374 [PMID: 28900791]
  91. Vet Parasitol. 2009 Jun 10;162(3-4):192-9 [PMID: 19375230]
  92. J Fish Biol. 2017 Jul;91(1):242-259 [PMID: 28516502]
  93. Nat Ecol Evol. 2021 Jan;5(1):74-81 [PMID: 33139919]
  94. Science. 2015 Jan 23;347(6220):436-8 [PMID: 25613889]
  95. Parasitology. 2012 Oct;139(12):1666-71 [PMID: 22894856]
  96. J Exp Zool A Ecol Integr Physiol. 2021 Feb;335(2):250-264 [PMID: 33200884]
  97. Pol J Vet Sci. 2011;14(3):443-8 [PMID: 21957739]
  98. PLoS One. 2013;8(3):e58976 [PMID: 23527062]
  99. Parasitology. 2021 Jun;148(7):827-834 [PMID: 33685539]
  100. BMC Ecol. 2013 Apr 08;13:15 [PMID: 23565726]
  101. J Exp Biol. 2020 Dec 24;223(Pt 24): [PMID: 33161382]
  102. J Evol Biol. 2018 Jun;31(6):904-913 [PMID: 29577502]
  103. Glob Chang Biol. 2018 Apr;24(4):1452-1469 [PMID: 29168281]
  104. PLoS One. 2012;7(5):e36495 [PMID: 22615772]
  105. Conserv Physiol. 2021 Sep 07;9(1):coab074 [PMID: 34512994]
  106. Trends Ecol Evol. 1996 Aug;11(8):317-21 [PMID: 21237861]
  107. Nat Immunol. 2013 Sep;14(9):879-83 [PMID: 23959175]
  108. Pathogens. 2013 Feb 13;2(1):71-91 [PMID: 25436882]
  109. Comp Biochem Physiol A Mol Integr Physiol. 2012 Nov;163(3-4):379-87 [PMID: 22841606]
  110. Oecologia. 2015 Sep;179(1):29-41 [PMID: 25920904]
  111. J Exp Biol. 2013 Nov 15;216(Pt 22):4242-50 [PMID: 23997195]
  112. Physiol Biochem Zool. 2014 Sep-Oct;87(5):729-39 [PMID: 25244384]
  113. Int J Parasitol. 1992 Apr;22(2):243-5 [PMID: 1316884]
  114. Fish Physiol Biochem. 2014 Jun;40(3):827-37 [PMID: 24276574]
  115. Ecol Lett. 2018 Dec;21(12):1869-1884 [PMID: 30369000]
  116. Fish Shellfish Immunol. 2019 Aug;91:12-18 [PMID: 31082518]
  117. Fish Shellfish Immunol. 2020 Sep;104:478-488 [PMID: 32470509]
  118. Oecologia. 2014 Jul;175(3):811-23 [PMID: 24839093]
  119. PeerJ. 2016 Mar 31;4:e1766 [PMID: 27069782]
  120. Int J Parasitol. 2011 May;41(6):615-26 [PMID: 21256849]
  121. Oecologia. 2002 Aug;132(4):492-500 [PMID: 28547634]
  122. Comp Biochem Physiol C Toxicol Pharmacol. 2019 Dec;226:108611 [PMID: 31454703]
  123. Int J Parasitol Parasites Wildl. 2013 May 23;2:190-6 [PMID: 24533334]
  124. J Exp Biol. 2013 Dec 15;216(Pt 24):4514-9 [PMID: 24031067]
  125. PLoS One. 2015 Oct 07;10(10):e0137679 [PMID: 26444876]
  126. J Evol Biol. 2016 Oct;29(10):1922-1931 [PMID: 27726236]
  127. Comp Biochem Physiol A Mol Integr Physiol. 2015 Jan;179:192-6 [PMID: 25446145]
  128. Vet Parasitol. 2012 Jul 6;187(3-4):459-63 [PMID: 22293149]
  129. Biol Rev Camb Philos Soc. 2007 Nov;82(4):591-605 [PMID: 17944619]
  130. Ecol Lett. 2022 Feb;25(2):541-554 [PMID: 34850533]
  131. Dev Comp Immunol. 2020 Apr;105:103587 [PMID: 31875516]
  132. Ticks Tick Borne Dis. 2013 Jun;4(4):346-51 [PMID: 23558234]
  133. Biol Lett. 2011 Dec 23;7(6):906-8 [PMID: 21632618]
  134. Antioxid Redox Signal. 2014 Feb 20;20(6):1000-37 [PMID: 23992156]
  135. Zoology (Jena). 2015 Dec;118(6):386-93 [PMID: 26265584]
  136. J Exp Biol. 2008 Jul;211(Pt 13):2155-61 [PMID: 18552305]
  137. PLoS One. 2015 May 04;10(5):e0126155 [PMID: 25938441]
  138. PLoS One. 2012;7(8):e43088 [PMID: 22905205]
  139. Proc Biol Sci. 2012 Apr 22;279(1733):1466-76 [PMID: 22048952]
  140. Am Nat. 2004 Nov;164(5):651-9 [PMID: 15540154]
  141. J Parasitol. 2014 Feb;100(1):154-6 [PMID: 24188248]
  142. Infect Genet Evol. 2017 Oct;54:491-495 [PMID: 28818622]
  143. Curr Biol. 2014 Nov 3;24(21):2586-91 [PMID: 25438946]
  144. J Exp Biol. 2021 Mar 26;224(Pt 6): [PMID: 33536304]
  145. Vet Parasitol. 2011 May 31;178(1-2):15-21 [PMID: 21255934]
  146. Int J Parasitol. 2022 Jan;52(1):87-96 [PMID: 34450133]
  147. Trop Anim Health Prod. 2015 Jun;47(5):909-14 [PMID: 25846570]
  148. Front Immunol. 2019 Jan 15;9:3160 [PMID: 30697214]
  149. Physiol Behav. 2019 Dec 1;212:112697 [PMID: 31622611]
  150. Fish Shellfish Immunol. 2018 Sep;80:641-650 [PMID: 29886140]
  151. Environ Pollut. 2021 Mar 1;272:116042 [PMID: 33190983]
  152. Physiol Biochem Zool. 2021 Mar-Apr;94(2):71-82 [PMID: 33399516]
  153. Nutr Res Rev. 2000 Jun;13(1):3-29 [PMID: 19087431]
  154. J Exp Biol. 2006 Nov;209(Pt 21):4329-38 [PMID: 17050848]

Word Cloud

Created with Highcharts 10.0.0oxidativeimmunestatusstresseffectfunctionstudiesinfectionchangesvertebratessizesvsvariationspeciesresponsemarkersinjectionantigendatasetbirdsmammalssignificanteffectsexperimentalsizemethodologicalstrengthdirectionresultsworkInferringpatternsobservedbiomedicalresearchecoimmunologicaltheorypredictsubiquitousphysiologicalcostcontributesgeneratingindividualspredictionhoweveroftenchallengedempiricaltestingrelationshippointsimportancecombiningecologicalimmunologyecologyunderstandingproximatecausesfitnessconsequencesindividualhealthadaptabilitynaturalanthropogenicenvironmentalreviewedevidenceperformedphylogeneticmeta-analysesowingeithercaptivefree-living141126297dominatedfishprovided958%parasiteexposureassociatedtaxonomicclassenvironmentcaptivitywildcontrastpredictionsagecategoryyoungadultstudydesigncorrelationalproxiespacelifeclutchlitterbodymassnegligibleSeveralaspectstypeimmunostimulantlaboratoryassaytissueanalysedshowedsuggestalterationswidespreadconsequenceacrossHoweveralsoidentifiedheterogeneitysuggestsnecessarilyresultFinallyidentifiescaveatsmightrelevantinterpretationcomparabilityapplicationconservationprogramsmeta-analysisimpactsantioxidantecoimmunologyinflammationlife-historytrade-offswildlifediseases

Similar Articles

Cited By