Opportunities and dilemmas of nano neural electrodes.

Yu Wu, Haowen Chen, Liang Guo
Author Information
  1. Yu Wu: Department of Electrical and Computer Engineering, The Ohio State University Columbus OH USA guo.725@osu.edu. ORCID
  2. Haowen Chen: Department of Electrical and Computer Engineering, The Ohio State University Columbus OH USA guo.725@osu.edu.
  3. Liang Guo: Department of Electrical and Computer Engineering, The Ohio State University Columbus OH USA guo.725@osu.edu. ORCID

Abstract

Developing electrophysiological platforms to capture electrical activities of neurons and exert modulatory stimuli lays the foundation for many neuroscience-related disciplines, including the neuron-machine interface, neuroprosthesis, and mapping of brain circuitry. Intrinsically more advantageous than genetic and chemical neuronal probes, electrical interfaces directly target the fundamental driving force-transmembrane currents-behind the complicated and diverse neuronal signals, allowing for the discovery of neural computational mechanisms of the most accurate extent. Furthermore, establishing electrical access to neurons is so far the most promising solution to integrate large-scale, high-speed modern electronics with neurons that are highly dynamic and adaptive. Over the evolution of electrode-based electrophysiologies, there has long been a trade-off in terms of precision, invasiveness, and parallel access due to limitations in fabrication techniques and insufficient understanding of membrane-electrode interactions. On the one hand, intracellular platforms based on patch clamps and sharp electrodes suffer from acute cellular damage, fluid diffusion, and labor-intensive micromanipulation, with little room for parallel recordings. On the other hand, conventional extracellular microelectrode arrays cannot detect from subcellular compartments or capture subthreshold membrane potentials because of the large electrode size and poor seal resistance, making it impossible to depict a comprehensive picture of a neuron's electrical activities. Recently, the application of nanotechnology on neuronal electrophysiology has brought about a promising solution to mitigate these conflicts on a single chip. In particular, three dimensional nanostructures of 10-100 nm in diameter are naturally fit to achieve the purpose of precise and localized interrogations. Engineering them into vertical nanoprobes bound on planar substrates resulted in excellent membrane-electrode seals and high-density electrode distribution. There is no doubt that 3D vertical nanoelectrodes have achieved a fundamental milestone in terms of high precision, low invasiveness, and parallel recording at the neuron-electrode interface, albeit with there being substantial engineering issues that remain before the potential of nano neural interfaces can be fully exploited. Within this framework, we review the qualitative breakthroughs and opportunities brought about by 3D vertical nanoelectrodes, and discuss the major limitations of current electrode designs with respect to rational and seamless cell-on-chip systems.

References

  1. Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):E5584-92 [PMID: 25489081]
  2. Science. 2006 Aug 25;313(5790):1100-4 [PMID: 16931757]
  3. J Comput Neurosci. 2012 Feb;32(1):73-100 [PMID: 21667156]
  4. Acc Chem Res. 2018 May 15;51(5):1046-1053 [PMID: 29648779]
  5. J Neural Eng. 2019 Dec 23;17(1):016017 [PMID: 31658443]
  6. ACS Appl Mater Interfaces. 2009 Jan;1(1):30-4 [PMID: 20355748]
  7. Nano Lett. 2017 May 10;17(5):2757-2764 [PMID: 28384403]
  8. Nano Lett. 2013 Aug 14;13(8):3553-8 [PMID: 23815499]
  9. Nano Lett. 2007 Oct;7(10):2960-5 [PMID: 17880143]
  10. Sci Rep. 2016 Nov 04;6:36498 [PMID: 27812002]
  11. Biomaterials. 2011 Dec;32(36):9866-75 [PMID: 21924770]
  12. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1259-64 [PMID: 24474745]
  13. Angew Chem Int Ed Engl. 2014 Nov 10;53(46):12456-60 [PMID: 25060546]
  14. ACS Nano. 2014 Mar 25;8(3):1972-94 [PMID: 24559246]
  15. Small. 2013 Jan 28;9(2):263-72 [PMID: 23034997]
  16. Adv Sci (Weinh). 2018 Mar 10;5(6):1700625 [PMID: 29938162]
  17. Nat Nanotechnol. 2017 Aug;12(8):750-756 [PMID: 28581510]
  18. ACS Nano. 2018 May 22;12(5):4086-4095 [PMID: 29727159]
  19. IEEE Sens J. 2019;19(22): [PMID: 32116472]
  20. Nano Lett. 2016 Feb 10;16(2):1509-13 [PMID: 26745653]
  21. Chembiochem. 2017 Apr 4;18(7):623-628 [PMID: 28130882]
  22. Nat Commun. 2014;5:3206 [PMID: 24487777]
  23. Nanoscale Res Lett. 2014 Feb 03;9(1):56 [PMID: 24484729]
  24. Nat Nanotechnol. 2014 Feb;9(2):142-7 [PMID: 24336402]
  25. Zh Evol Biokhim Fiziol. 2014 Nov-Dec;50(6):440-6 [PMID: 25782285]
  26. Nat Mater. 2018 Mar;17(3):237-242 [PMID: 29434303]
  27. ACS Nano. 2015 Jul 28;9(7):7678-89 [PMID: 26168074]
  28. Nat Commun. 2014 Apr 07;5:3613 [PMID: 24710350]
  29. Sci Rep. 2016 Jun 03;6:27110 [PMID: 27256971]
  30. Neuron. 2015 Apr 8;86(1):207-17 [PMID: 25772189]
  31. Sci Adv. 2017 Jun 09;3(6):e1601649 [PMID: 28630894]
  32. Nano Lett. 2018 Sep 12;18(9):6100-6105 [PMID: 30091365]
  33. Nat Nanotechnol. 2011 Dec 18;7(3):174-9 [PMID: 22179566]
  34. Nat Nanotechnol. 2012 Jan 10;7(3):180-4 [PMID: 22231664]
  35. ACS Appl Mater Interfaces. 2009 Feb;1(2):266-9 [PMID: 20305799]
  36. J Neurosci Methods. 2018 Feb 1;295:68-76 [PMID: 29203409]
  37. Nat Rev Neurosci. 2012 May 18;13(6):407-20 [PMID: 22595786]
  38. Nano Lett. 2017 Jun 14;17(6):3932-3939 [PMID: 28534411]
  39. Nano Lett. 2017 Aug 9;17(8):4588-4595 [PMID: 28682082]
  40. Nanotechnology. 2012 Oct 19;23(41):415102 [PMID: 23010859]
  41. J Neural Eng. 2019 Jun;16(3):035001 [PMID: 30736013]
  42. Nat Methods. 2010 Mar;7(3):200-2 [PMID: 20118930]
  43. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1866-E1874 [PMID: 28223521]
  44. Nature. 2019 Jul;571(7763):63-71 [PMID: 31270481]
  45. Nano Lett. 2012 Jun 13;12(6):3329-33 [PMID: 22583370]
  46. Nat Nanotechnol. 2013 Feb;8(2):83-94 [PMID: 23380931]
  47. Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1870-5 [PMID: 20080678]
  48. Chem Phys Lett. 2012 May 21;536:65-67 [PMID: 22639466]
  49. IEEE Trans Biomed Eng. 2018 Feb;65(2):264-272 [PMID: 29053443]
  50. Curr Opin Neurobiol. 2014 Apr;25:149-55 [PMID: 24492069]
  51. Nano Lett. 2012 Nov 14;12(11):5815-20 [PMID: 23030066]
  52. ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10510-9 [PMID: 24074264]
  53. J Vis Exp. 2015 Apr 27;(98): [PMID: 25938822]
  54. Nano Lett. 2012 Dec 12;12(12):6498-504 [PMID: 23190424]
  55. Nano Lett. 2019 Feb 13;19(2):722-731 [PMID: 30673248]
  56. J Am Chem Soc. 2007 Jun 13;129(23):7228-9 [PMID: 17516647]
  57. J Biomed Mater Res. 2000 Sep 5;51(3):430-41 [PMID: 10880086]
  58. Science. 2001 Nov 2;294(5544):1030-8 [PMID: 11691980]
  59. Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5815-20 [PMID: 20212151]
  60. Adv Mater. 2015 Nov 25;27(44):7145-9 [PMID: 26445223]
  61. Exp Cell Res. 2004 May 1;295(2):387-94 [PMID: 15093738]
  62. Front Neurosci. 2016 Mar 07;10:69 [PMID: 27013938]
  63. Neuron. 2019 Sep 25;103(6):1005-1015 [PMID: 31495645]
  64. ACS Nano. 2017 Aug 22;11(8):8320-8328 [PMID: 28682058]
  65. Nat Nanotechnol. 2017 May;12(5):460-466 [PMID: 28192391]
  66. BMC Biochem. 2004 Jul 19;5:10 [PMID: 15260890]
  67. Lab Chip. 2012 Aug 21;12(16):2865-73 [PMID: 22678065]
  68. Nat Rev Drug Discov. 2008 Apr;7(4):358-68 [PMID: 18356919]
  69. Sci Adv. 2017 Feb 15;3(2):e1601966 [PMID: 28246640]
  70. Sci Rep. 2017 Aug 17;7(1):8524 [PMID: 28819252]
  71. J Neurophysiol. 2005 Nov;94(5):3479-86 [PMID: 16033944]
  72. Nano Lett. 2012 May 9;12(5):2639-44 [PMID: 22468846]
  73. Science. 2010 Aug 13;329(5993):830-4 [PMID: 20705858]
  74. Neuroscientist. 2012 Jun;18(3):216-23 [PMID: 21908849]
  75. Nat Cell Biol. 2012 Aug;14(8):874-81 [PMID: 22750946]
  76. Small. 2014 Oct 15;10(19):3853-7 [PMID: 24975778]
  77. Nano Lett. 2012 Aug 8;12(8):3881-6 [PMID: 22166016]
  78. Nat Rev Mater. 2018 Dec;3(12):473-490 [PMID: 31656635]
  79. Acc Chem Res. 2018 Mar 20;51(3):600-608 [PMID: 29437381]
  80. ACS Nano. 2014 Jul 22;8(7):6713-23 [PMID: 24963873]
  81. Pharmacol Rev. 2005 Dec;57(4):473-508 [PMID: 16382104]

Word Cloud

Created with Highcharts 10.0.0electricalneuronsneuronalneuralparallelelectrodeverticalplatformscaptureactivitiesinterfaceinterfacesfundamentalaccesspromisingsolutiontermsprecisioninvasivenesslimitationsmembrane-electrodehandelectrodesbrought3DnanoelectrodesnanoDevelopingelectrophysiologicalexertmodulatorystimulilaysfoundationmanyneuroscience-relateddisciplinesincludingneuron-machineneuroprosthesismappingbraincircuitryIntrinsicallyadvantageousgeneticchemicalprobesdirectlytargetdrivingforce-transmembranecurrents-behindcomplicateddiversesignalsallowingdiscoverycomputationalmechanismsaccurateextentFurthermoreestablishingfarintegratelarge-scalehigh-speedmodernelectronicshighlydynamicadaptiveevolutionelectrode-basedelectrophysiologieslongtrade-offduefabricationtechniquesinsufficientunderstandinginteractionsoneintracellularbasedpatchclampssharpsufferacutecellulardamagefluiddiffusionlabor-intensivemicromanipulationlittleroomrecordingsconventionalextracellularmicroelectrodearraysdetectsubcellularcompartmentssubthresholdmembranepotentialslargesizepoorsealresistancemakingimpossibledepictcomprehensivepictureneuron'sRecentlyapplicationnanotechnologyelectrophysiologymitigateconflictssinglechipparticularthreedimensionalnanostructures10-100nmdiameternaturallyfitachievepurposepreciselocalizedinterrogationsEngineeringnanoprobesboundplanarsubstratesresultedexcellentsealshigh-densitydistributiondoubtachievedmilestonehighlowrecordingneuron-electrodealbeitsubstantialengineeringissuesremainpotentialcanfullyexploitedWithinframeworkreviewqualitativebreakthroughsopportunitiesdiscussmajorcurrentdesignsrespectrationalseamlesscell-on-chipsystemsOpportunitiesdilemmas

Similar Articles

Cited By