Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing.

Ashwath Narayana, Sachin A Bhat, Almas Fathima, S V Lokesh, Sandeep G Surya, C V Yelamaggad
Author Information
  1. Ashwath Narayana: Department of Bio-Medical Engineering, Rajiv Gandhi Institute of Technology Cholanagar, R. T Nagar, Hebbal Bengaluru India.
  2. Sachin A Bhat: Centre for Nano and Soft Matter Sciences P. B. No. 1329, Prof. U. R. Rao Road, Jalahalli Bengaluru India yelamaggad@gmail.com.
  3. Almas Fathima: Department of Bio-Medical Engineering, Rajiv Gandhi Institute of Technology Cholanagar, R. T Nagar, Hebbal Bengaluru India.
  4. S V Lokesh: Department of Nanotechnology, Centre for PG Studies- Bangalore Region, Visvesvaraya Technological University Muddenahalli Chikkaballapur India lokeshsampangi@gmail.com.
  5. Sandeep G Surya: Electrical Engineering Department, Indian Institute of Technology Bombay Mumbai India.
  6. C V Yelamaggad: Centre for Nano and Soft Matter Sciences P. B. No. 1329, Prof. U. R. Rao Road, Jalahalli Bengaluru India yelamaggad@gmail.com. ORCID

Abstract

There has been steady progress in developing reliable and cost-effective strategies for the clean production of zinc oxide (ZnO) nanoparticles (NPs) owing to their unique structural and wide functional characteristics. While the green synthesis of such NPs from plant extracts has emerged as a sustainable and eco-friendly protocol, it is greatly restricted owing to the scarcity of potential natural precursors necessitating comprehensive investigations in this direction. Herein, we report a facile, low-cost green synthesis and characterization of ZnO NPs along with the demonstration of their usage as an active media in organic field-effect transistor (OFET) devices for sensing carbon monoxide (CO) gas. The ZnO NPs obtained from (lotus) leaf extract-mediated solution combustion synthesis at a much lower initiation temperature, the first of its kind, were characterized by various techniques such as UV-vis spectroscopy, XRD, EDX analysis, TEM and FESEM. The data derived from these experiments clearly evidence the formation of very pure and crystalline ZnO NPs possessing nearly spherical-shape with a size of 3-4 nm. The p-type organic field-effect transistor (OFET) device, fabricated using poly(3-hexylthiophene-2,5-diyl) (P3HT) and ZnO NPs, showed a field-effect mobility of 10 cm V sec with a slightly enhanced response of detecting CO gas at room temperature (RT). The phenomenon was further confirmed by the variation in electrical parameters of the OFET such as field-effect mobility (), on-current ( ), and off-current ( ). The selectivity and sensitivity of the fabricated device in CO gas detection was found to be more prominent than the other reducing gases (hydrogen sulphide, HS and ammonia, NH) and methanol vapours tested.

References

  1. Nano Lett. 2016 Apr 13;16(4):2628-32 [PMID: 26985595]
  2. Nano Lett. 2013 Aug 14;13(8):3524-30 [PMID: 23898882]
  3. Int J Pharm. 2009 Jan 21;366(1-2):170-84 [PMID: 18992314]
  4. Adv Drug Deliv Rev. 2002 Nov 1;54 Suppl 1:S131-55 [PMID: 12460720]
  5. J Sci Food Agric. 2018 Feb;98(3):849-864 [PMID: 29065236]
  6. Nanoscale Res Lett. 2018 Dec 22;13(1):411 [PMID: 30578467]
  7. Nanoscale Res Lett. 2014 Mar 10;9(1):111 [PMID: 24612921]
  8. Nat Commun. 2014 Sep 11;5:4948 [PMID: 25208828]
  9. Chem Soc Rev. 2013 Apr 7;42(7):3127-71 [PMID: 23455759]
  10. Chem Soc Rev. 2018 Jul 2;47(13):4697-4709 [PMID: 29770813]
  11. J Colloid Interface Sci. 2016 Jun 15;472:145-56 [PMID: 27031596]
  12. Nano Lett. 2012 Apr 11;12(4):2037-44 [PMID: 22381056]
  13. J Am Chem Soc. 2004 Sep 29;126(38):11774-5 [PMID: 15382895]
  14. J Am Chem Soc. 2009 Mar 18;131(10):3756-61 [PMID: 19275263]
  15. Sci Rep. 2015 Jul 08;5:11612 [PMID: 26152895]
  16. Light Sci Appl. 2016 Jun 03;5(6):e16080 [PMID: 30167168]
  17. Br J Clin Pharmacol. 2003 Dec;56(6):588-99 [PMID: 14616418]
  18. Chem Soc Rev. 2017 Jul 31;46(15):4774-4808 [PMID: 28621344]
  19. Bioinorg Chem Appl. 2018 Aug 1;2018:3569758 [PMID: 30154832]
  20. ACS Nano. 2015;9(4):3453-69 [PMID: 25808609]
  21. J Am Chem Soc. 2009 Jun 24;131(24):8356-7 [PMID: 19530723]
  22. Chem Commun (Camb). 2014 Feb 14;50(13):1519-22 [PMID: 24317277]
  23. Nano Lett. 2017 Aug 9;17(8):4964-4969 [PMID: 28654292]
  24. Chem Rev. 2004 Jan;104(1):293-346 [PMID: 14719978]
  25. Chem Rev. 2019 Jan 9;119(1):120-194 [PMID: 30247026]
  26. Nanoscale. 2019 Jul 7;11(25):12030-12074 [PMID: 31204762]
  27. Phys Chem Chem Phys. 2013 Mar 7;15(9):3022-6 [PMID: 23138867]
  28. Chemosphere. 2013 Jun;91(11):1604-11 [PMID: 23384541]
  29. Nature. 2000 Nov 2;408(6808):67-9 [PMID: 11081506]

Word Cloud

Created with Highcharts 10.0.0NPsZnOsynthesisfield-effectOFETCOgaszincoxidenanoparticlesowinggreenlow-costorganictransistorsensingcarbonmonoxidetemperaturedevicefabricatedmobilitysteadyprogressdevelopingreliablecost-effectivestrategiescleanproductionuniquestructuralwidefunctionalcharacteristicsplantextractsemergedsustainableeco-friendlyprotocolgreatlyrestrictedscarcitypotentialnaturalprecursorsnecessitatingcomprehensiveinvestigationsdirectionHereinreportfacilecharacterizationalongdemonstrationusageactivemediadevicesobtainedlotusleafextract-mediatedsolutioncombustionmuchlowerinitiationfirstkindcharacterizedvarioustechniquesUV-visspectroscopyXRDEDXanalysisTEMFESEMdataderivedexperimentsclearlyevidenceformationpurecrystallinepossessingnearlyspherical-shapesize3-4nmp-typeusingpoly3-hexylthiophene-25-diylP3HTshowed10cmVsecslightlyenhancedresponsedetectingroomRTphenomenonconfirmedvariationelectricalparameterson-currentoff-currentselectivitysensitivitydetectionfoundprominentreducinggaseshydrogensulphideHSammoniaNHmethanolvapourstestedGreenapplicationtransistor-based

Similar Articles

Cited By