Exploring the metabolic biomarkers and pathway changes in crucian under carbonate alkalinity exposure using high-throughput metabolomics analysis based on UPLC-ESI-QTOF-MS.

Yan-Chun Sun, Shi-Cheng Han, Ming-Zhu Yao, Hong-Bai Liu, Yu-Mei Wang
Author Information
  1. Yan-Chun Sun: Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Ministry of Agriculture and Rural Areas Harbin 150070 P. R. China liuhongbai@sina.com wangym@cafs.ac.cn +86-451-84604803 +86-451-84604803. ORCID
  2. Shi-Cheng Han: Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Ministry of Agriculture and Rural Areas Harbin 150070 P. R. China liuhongbai@sina.com wangym@cafs.ac.cn +86-451-84604803 +86-451-84604803.
  3. Ming-Zhu Yao: Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Ministry of Agriculture and Rural Areas Harbin 150070 P. R. China liuhongbai@sina.com wangym@cafs.ac.cn +86-451-84604803 +86-451-84604803.
  4. Hong-Bai Liu: Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Ministry of Agriculture and Rural Areas Harbin 150070 P. R. China liuhongbai@sina.com wangym@cafs.ac.cn +86-451-84604803 +86-451-84604803.
  5. Yu-Mei Wang: Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products, Ministry of Agriculture and Rural Areas Harbin 150070 P. R. China liuhongbai@sina.com wangym@cafs.ac.cn +86-451-84604803 +86-451-84604803. ORCID

Abstract

The aims of this study is to explore the metabolomic biomarker and pathway changes in crucian under carbonate alkalinity exposures using high-throughput metabolomics analysis based on ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS) for carrying out adaptive evolution of fish in environmental exposures and understanding molecular physiological mechanisms of saline-alkali tolerance in fishes. Under 60 day exposure management, the UPLC-ESI-QTOF-MS technology, coupled with a pattern recognition approach and metabolic pathway analysis, was utilized to give insight into the metabolic biomarker and pathway changes. In addition, biochemical parameters in response to carbonate alkalinity in fish were detected for chronic impairment evaluation. A total of twenty-seven endogenous metabolites were identified to distinguish the biochemical changes in fish in clean water under exposure to different concentrations of carbonate alkalinity (CA); these mainly involved amino acid synthesis and metabolism, arachidonic acid metabolism, glyoxylate and dicarboxylate metabolism, pyruvate metabolism and the citrate cycle (TCA cycle). Compared with the control group, CA exposure increased the level of blood ammonia; TP; ALB; Gln in the liver and gills; GS; urea in blood, the liver and gills; CREA; CPS; Glu and LDH; and decreased the level of weight gain rate, oxygen consumption, discharge rate of ammonia, SOD, CAT, ALT, AST and Na/K-ATPase. At low concentrations, CA can change the normal metabolism of fish in terms of changing the osmotic pressure regulation capacity, antioxidant capacity, ammonia metabolism and liver and kidney function to adapt to the CA exposure environment. As the concentration of CA increases, various metabolic processes in crucian are inhibited, causing chronic damage to the body. The results show that the metabolomic strategy is a potentially powerful tool for identifying the mechanisms in response to different environmental exposomes and offers precious information about the chronic response of fish to CA.

References

  1. Phytother Res. 2014 Apr;28(4):526-33 [PMID: 23913598]
  2. Phytomedicine. 2020 Aug;74:152928 [PMID: 31451286]
  3. Magn Reson Chem. 2013 Sep;51(9):549-56 [PMID: 23828598]
  4. J Physiol Biochem. 2014 Mar;70(1):117-28 [PMID: 23975652]
  5. Planta Med. 2010 Dec;76(17):2026-35 [PMID: 21058239]
  6. Mol Biosyst. 2012 Apr;8(4):1206-21 [PMID: 22282765]
  7. J Proteomics. 2012 Feb 2;75(4):1079-88 [PMID: 22079244]
  8. Analyst. 2012 Sep 21;137(18):4200-8 [PMID: 22852134]
  9. RSC Adv. 2018 Oct 18;8(62):35600-35610 [PMID: 35547938]
  10. Oncotarget. 2017 Oct 19;8(65):108760-108770 [PMID: 29312565]
  11. J Chromatogr B Analyt Technol Biomed Life Sci. 2019 Mar 1;1109:112-120 [PMID: 30743140]
  12. RSC Adv. 2018 Feb 15;8(14):7403-7413 [PMID: 35539139]
  13. Am J Physiol Regul Integr Comp Physiol. 2014 Nov 1;307(9):R1061-84 [PMID: 25163920]
  14. J Pharm Biomed Anal. 2012 Jan 25;58:113-24 [PMID: 22019702]
  15. RSC Adv. 2018 Oct 31;8(64):36831-36839 [PMID: 35558940]
  16. J Proteomics. 2019 Aug 30;206:103447 [PMID: 31326558]
  17. Environ Toxicol Chem. 2009 Jul;28(7):1455-61 [PMID: 19215183]
  18. OMICS. 2013 Oct;17(10):495-501 [PMID: 23988149]
  19. Int J Biol Macromol. 2019 May 1;128:363-375 [PMID: 30690116]
  20. Mol Cell Proteomics. 2013 Mar;12(3):710-9 [PMID: 23264353]
  21. Environ Toxicol Pharmacol. 2015 Mar;39(2):668-76 [PMID: 25818984]
  22. Comp Biochem Physiol A Mol Integr Physiol. 2018 Aug;222:52-59 [PMID: 29698766]
  23. Aquat Toxicol. 2002 Oct 2;60(1-2):75-83 [PMID: 12204588]
  24. Phytother Res. 2012 Oct;26(10):1466-71 [PMID: 22422429]
  25. Clin Chim Acta. 2012 Dec 24;414:65-9 [PMID: 22971357]
  26. Environ Monit Assess. 2019 Jul 25;191(8):512 [PMID: 31346834]
  27. Sci Rep. 2017 Apr 06;7:46234 [PMID: 28383015]
  28. J Sep Sci. 2011 Dec;34(24):3451-9 [PMID: 21826791]
  29. Comp Biochem Physiol A Mol Integr Physiol. 2017 May;207:57-64 [PMID: 28238831]
  30. Biomed Res Int. 2015;2015:354671 [PMID: 26090402]
  31. Anal Chem. 2012 Jan 3;84(1):428-39 [PMID: 22132738]
  32. Cancer Lett. 2014 Apr 1;345(1):17-20 [PMID: 24333717]
  33. Clin Chim Acta. 2013 Sep 23;424:3-7 [PMID: 23669185]
  34. Fish Shellfish Immunol. 2019 Jan;84:1170-1179 [PMID: 30366089]
  35. OMICS. 2015 Mar;19(3):186-95 [PMID: 25588034]
  36. PLoS One. 2013 May 16;8(5):e64381 [PMID: 23696887]
  37. Mass Spectrom Rev. 2019 Aug;38(4-5):380-402 [PMID: 30817039]
  38. J Pharm Biomed Anal. 2011 Jul 15;55(5):859-68 [PMID: 21353755]
  39. Comp Biochem Physiol B Biochem Mol Biol. 2012 Nov-Dec;163(3-4):274-84 [PMID: 22750401]
  40. Sci Total Environ. 2019 Feb 25;653:1395-1406 [PMID: 30759578]
  41. Int J Mol Sci. 2018 May 14;19(5): [PMID: 29758010]
  42. RSC Adv. 2018 Aug 24;8(53):30061-30070 [PMID: 35546810]
  43. J Pharm Biomed Anal. 2010 Nov 2;53(3):631-45 [PMID: 20605388]
  44. RSC Adv. 2019 Apr 11;9(20):11420-11432 [PMID: 35520218]
  45. Environ Toxicol Pharmacol. 2018 Sep;62:181-187 [PMID: 30053707]
  46. Phytomedicine. 2018 Jun 1;45:84-92 [PMID: 29685366]
  47. J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Mar 15;1015-1016:50-61 [PMID: 26896572]
  48. Clin Chim Acta. 2014 Feb 15;429:106-10 [PMID: 24321733]
  49. Analyst. 2012 Oct 21;137(20):4703-11 [PMID: 22950079]
  50. Phytomedicine. 2019 Feb 15;54:328-338 [PMID: 30340940]
  51. Aquat Toxicol. 2012 Jun 15;114-115:134-41 [PMID: 22446825]
  52. Phytother Res. 2015 Feb;29(2):159-66 [PMID: 25331169]
  53. Sci Rep. 2014 Oct 24;4:6768 [PMID: 25341677]
  54. Fish Shellfish Immunol. 2005 Oct;19(4):331-44 [PMID: 15863014]
  55. Clin Chim Acta. 2013 Jan 16;415:261-5 [PMID: 23146870]
  56. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Dec 1;1102-1103:143-151 [PMID: 30391728]
  57. J Exp Biol. 2002 Jan;205(Pt 1):91-100 [PMID: 11818415]
  58. Sci Rep. 2016 Jun 16;6:28031 [PMID: 27306123]
  59. Sci Rep. 2016 Jan 11;6:18997 [PMID: 26750403]
  60. Biomed Chromatogr. 2016 Jan;30(1):7-12 [PMID: 25739660]
  61. J Proteomics. 2012 Feb 2;75(4):1411-27 [PMID: 22134358]
  62. RSC Adv. 2018 Mar 6;8(17):9375-9382 [PMID: 35541871]
  63. Physiol Biochem Zool. 2016 Jan-Feb;89(1):26-40 [PMID: 27082522]
  64. RSC Adv. 2019 Jan 23;9(6):3072-3080 [PMID: 35518968]
  65. Arch Environ Contam Toxicol. 2019 Apr;76(3):469-482 [PMID: 30607445]
  66. Pharmacogn Mag. 2015 Jul-Sep;11(43):586-93 [PMID: 26246736]
  67. Sci Rep. 2016 Nov 21;6:37519 [PMID: 27869223]
  68. Phytochem Anal. 2013 May-Jun;24(3):263-76 [PMID: 23225552]
  69. Analyst. 2012 Jan 7;137(1):170-85 [PMID: 22030742]
  70. Front Pharmacol. 2019 May 29;10:553 [PMID: 31191306]
  71. RSC Adv. 2019 Oct 9;9(55):32141-32153 [PMID: 35530762]
  72. Complement Ther Med. 2012 Feb-Apr;20(1-2):93-9 [PMID: 22305254]
  73. Fitoterapia. 2012 Dec;83(8):1699-705 [PMID: 23041522]
  74. Environ Toxicol. 2017 Jan;32(1):227-240 [PMID: 26677111]
  75. Int Urol Nephrol. 2014 May;46(5):1025-30 [PMID: 24217804]
  76. Oxid Med Cell Longev. 2019 Mar 20;2019:7258624 [PMID: 31015890]
  77. Oncotarget. 2017 Apr 28;8(39):65022-65041 [PMID: 29029409]
  78. Fish Shellfish Immunol. 2018 Sep;80:592-599 [PMID: 29960065]
  79. J Sep Sci. 2013 Oct;36(19):3191-9 [PMID: 23913749]
  80. Pharmazie. 2012 Feb;67(2):99-105 [PMID: 22512077]
  81. J Proteome Res. 2012 Feb 3;11(2):1284-301 [PMID: 22053844]
  82. Analyst. 2013 Jun 7;138(11):3303-12 [PMID: 23608925]
  83. J Comp Physiol B. 2012 Apr;182(3):367-79 [PMID: 22038021]
  84. Environ Toxicol. 2019 Apr;34(4):375-387 [PMID: 30548797]
  85. Phytochem Anal. 2012 Nov-Dec;23(6):657-67 [PMID: 22745030]
  86. J Sep Sci. 2011 Nov;34(22):3208-15 [PMID: 21994021]
  87. J Sci Food Agric. 2019 Oct;99(13):6066-6075 [PMID: 31228262]
  88. J Sep Sci. 2012 Dec;35(24):3477-85 [PMID: 23225713]
  89. Fish Shellfish Immunol. 2018 Sep;80:392-396 [PMID: 29913207]
  90. Food Funct. 2015 Nov;6(11):3540-9 [PMID: 26302114]
  91. Environ Toxicol Chem. 2008 Feb;27(2):360-6 [PMID: 18348636]
  92. Eval Program Plann. 2019 Aug;75:10-19 [PMID: 31003118]
  93. RSC Adv. 2019 Jul 3;9(36):20796-20805 [PMID: 35515565]
  94. Appl Biochem Biotechnol. 2013 Jun;170(4):774-86 [PMID: 23609910]
  95. Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):2958-2963 [PMID: 29507224]
  96. Physiol Biochem Zool. 2002 Mar-Apr;75(2):111-22 [PMID: 12024287]
  97. Ecotoxicol Environ Saf. 2013 Sep;95:104-12 [PMID: 23790591]
  98. Environ Pollut. 2016 Jul;214:132-141 [PMID: 27077552]
  99. Appl Biochem Biotechnol. 2012 Nov;168(6):1718-27 [PMID: 22971835]
  100. J Fish Biol. 2014 Mar;84(3):603-38 [PMID: 24438022]
  101. J Oleo Sci. 2018 Apr 1;67(4):445-453 [PMID: 29526872]
  102. Environ Toxicol Chem. 2018 Oct;37(10):2705-2713 [PMID: 30044002]
  103. Analyst. 2012 Jan 21;137(2):293-300 [PMID: 22102985]
  104. Sci Rep. 2016 Feb 16;6:19942 [PMID: 26879284]
  105. J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Jul 15;1026:217-226 [PMID: 26747643]
  106. OMICS. 2012 Jul-Aug;16(7-8):414-21 [PMID: 22734809]

Word Cloud

Created with Highcharts 10.0.0CAmetabolismfishexposurepathwaychangescarbonatealkalinitymetaboliccruciananalysisUPLC-ESI-QTOF-MSresponsechronicammonialivermetabolomicbiomarkerexposuresusinghigh-throughputmetabolomicsbasedenvironmentalmechanismsbiochemicaldifferentconcentrationsacidcyclelevelbloodgillsratecapacityaimsstudyexploreultra-performanceliquidchromatography-electrosprayionization-quadrupoletimeflight-tandemmassspectrometrycarryingadaptiveevolutionunderstandingmolecularphysiologicalsaline-alkalitolerancefishes60daymanagementtechnologycoupledpatternrecognitionapproachutilizedgiveinsightadditionparametersdetectedimpairmentevaluationtotaltwenty-sevenendogenousmetabolitesidentifieddistinguishcleanwatermainlyinvolvedaminosynthesisarachidonicglyoxylatedicarboxylatepyruvatecitrateTCAComparedcontrolgroupincreasedTPALBGlnGSureaCREACPSGluLDHdecreasedweightgainoxygenconsumptiondischargeSODCATALTASTNa/K-ATPaselowcanchangenormaltermschangingosmoticpressureregulationantioxidantkidneyfunctionadaptenvironmentconcentrationincreasesvariousprocessesinhibitedcausingdamagebodyresultsshowstrategypotentiallypowerfultoolidentifyingexposomesofferspreciousinformationExploringbiomarkers

Similar Articles

Cited By