pyVHR: a Python framework for remote photoplethysmography.

Giuseppe Boccignone, Donatello Conte, Vittorio Cuculo, Alessandro D'Amelio, Giuliano Grossi, Raffaella Lanzarotti, Edoardo Mortara
Author Information
  1. Giuseppe Boccignone: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy.
  2. Donatello Conte: Laboratoire d'Informatique Fondamentale et Appliquée de Tours, Université de Tours, Tours, France.
  3. Vittorio Cuculo: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy.
  4. Alessandro D'Amelio: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy.
  5. Giuliano Grossi: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy.
  6. Raffaella Lanzarotti: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy.
  7. Edoardo Mortara: PHuSe Lab - Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy.

Abstract

Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework.

Keywords

References

  1. Opt Express. 2008 Dec 22;16(26):21434-45 [PMID: 19104573]
  2. Physiol Meas. 2014 Aug 27;35(9):1913-1926 [PMID: 25159049]
  3. IEEE Trans Biomed Eng. 2017 Jul;64(7):1479-1491 [PMID: 28113245]
  4. Physiol Meas. 2014 May;35(5):807-31 [PMID: 24681430]
  5. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2957-60 [PMID: 25570611]
  6. Comput Biol Med. 1988;18(3):145-56 [PMID: 3396335]
  7. BMC Bioinformatics. 2017 Jan 25;18(1):68 [PMID: 28122501]
  8. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6398-404 [PMID: 26737757]
  9. Rev Sci Instrum. 2007 Apr;78(4):044304 [PMID: 17477684]
  10. Sensors (Basel). 2021 Sep 20;21(18): [PMID: 34577503]
  11. Opt Express. 2010 May 10;18(10):10762-74 [PMID: 20588929]
  12. Early Hum Dev. 2013 Dec;89(12):943-8 [PMID: 24135159]
  13. IEEE Trans Biomed Eng. 2013 Oct;60(10):2878-86 [PMID: 23744659]
  14. Ann Biomed Eng. 2005 Aug;33(8):1034-41 [PMID: 16133912]
  15. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6521-6524 [PMID: 31947335]
  16. IEEE Trans Image Process. 2019 Oct 22;: [PMID: 31647433]
  17. IEEE Trans Biomed Eng. 2016 Sep;63(9):1974-1984 [PMID: 26685222]
  18. Sensors (Basel). 2021 May 27;21(11): [PMID: 34071736]
  19. Biometrics. 1989 Mar;45(1):255-68 [PMID: 2720055]

Word Cloud

Created with Highcharts 10.0.0rPPGmethodsphotoplethysmographyframeworkRemoteestimateHRvideosstatisticalsignalcanlearning-basedpyVHRwholeprocesseitheracceleratedPythonprocessingaspiresautomaticallyheartratevariabilityrealisticenvironmentsnumbereffectiverelyingdata-drivenmodel-basedapproachesemergedpasttwodecadesexhibitincreasingabilitybloodvolumepulseBVPuponBPMsBeatsperMinuteestimatedFurthermorerecentlyproposedpresentrepresentsmulti-stagepipelinecoveringextractinganalyzingfluctuationsdesignedtheoreticalstudiespracticalapplicationscontextswearablesensorsinconvenientuseNamelysupportsdevelopmentassessmentanalysisnoveltraditionalsimplysoundcomparisonwell-establishedmultipledatasetsbuiltlibrariesvideowellequippedparallel/acceleratedad-hocprocedurespavingwayonlineGPUsafelyrunreal-time30fpsHDaveragespeeduparound5papershapedformgentletutorialpresentationpyVHR:remoteContactlessmonitoringDeepDeepfakeDetectionHeartRateEstimation

Similar Articles

Cited By