Plantaricin A, Derived from Lactiplantibacillus plantarum, Reduces the Intrinsic Resistance of Gram-Negative Bacteria to Hydrophobic Antibiotics.

Fanqiang Meng, Yanan Liu, Ting Nie, Chao Tang, Fengxia Lyu, Xiaomei Bie, Yingjian Lu, Mingwen Zhao, Zhaoxin Lu
Author Information
  1. Fanqiang Meng: College of Food Science and Technology, Nanjing Agricultural Universitygrid.27871.3b, Nanjing, Jiangsu, People's Republic of China. ORCID
  2. Yanan Liu: College of Food Science and Technology, Nanjing Agricultural Universitygrid.27871.3b, Nanjing, Jiangsu, People's Republic of China.
  3. Ting Nie: School of Life Sciences and Biotechnology, Shanghai Jiao Tong Universitygrid.16821.3c, Shanghai, People's Republic of China.
  4. Chao Tang: College of Food Science and Technology, Nanjing Agricultural Universitygrid.27871.3b, Nanjing, Jiangsu, People's Republic of China.
  5. Fengxia Lyu: College of Food Science and Technology, Nanjing Agricultural Universitygrid.27871.3b, Nanjing, Jiangsu, People's Republic of China.
  6. Xiaomei Bie: College of Food Science and Technology, Nanjing Agricultural Universitygrid.27871.3b, Nanjing, Jiangsu, People's Republic of China. ORCID
  7. Yingjian Lu: College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, People's Republic of China.
  8. Mingwen Zhao: Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural Universitygrid.27871.3b, Nanjing, Jiangsu, People's Republic of China. ORCID
  9. Zhaoxin Lu: College of Food Science and Technology, Nanjing Agricultural Universitygrid.27871.3b, Nanjing, Jiangsu, People's Republic of China. ORCID

Abstract

The outer membrane of Gram-negative bacteria is one of the major factors contributing to the development of antibiotic resistance, resulting in a lack of effectiveness of several hydrophobic antibiotics. Plantaricin A (PlnA) intensifies the potency of antibiotics by increasing the permeability of the bacterial outer membrane. Moreover, it has been proven to bind to the lipopolysaccharide of Escherichia coli via electrostatic and hydrophobic interactions and to interfere with the integrity of the bacterial outer membrane. Based on this mechanism, we designed a series of PlnA1 analogs by changing the structure, hydrophobicity, and charge to enhance their membrane-permeabilizing ability. Subsequent analyses revealed that among the PlnA1 analogs, OP4 demonstrated the highest penetrating ability, weaker cytotoxicity, and a higher therapeutic index. In addition, it decelerated the development of antibiotic resistance when the E. coli cells were continuously exposed to sublethal concentrations of erythromycin and ciprofloxacin for 30 generations. Further studies in mice with sepsis showed that OP4 heightens the potency of erythromycin against E. coli and relieves inflammation. In summary, our results showed that the PlnA1 analogs investigated in the present study, especially OP4, reduce the intrinsic antibiotic resistance of Gram-negative pathogens and expand the antibiotic sensitivity spectrum of hydrophobic antibiotics in Gram-negative bacteria. Antibiotic resistance is a global health concern due to indiscriminate use of antibiotics, resistance transfer, and intrinsic resistance of certain Gram-negative bacteria. The asymmetric bacterial outer membrane prevents the entry of hydrophobic antibiotics and renders them ineffective. Consequently, these antibiotics could be employed to treat infections caused by Gram-negative bacteria, after increasing their outer membrane permeability. As PlnA reportedly penetrates outer membranes, we designed a series of PlnA1 analogs and proved that OP4, one of these antimicrobial peptides, effectively augmented the permeability of the bacterial outer membrane. Furthermore, OP4 effectively improved the potency of erythromycin and alleviated inflammatory responses caused by Escherichia coli infection. Likewise, OP4 curtailed antibiotic resistance development in E. coli, thereby prolonging exposure to sublethal antibiotic concentrations. Thus, the combined use of hydrophobic antibiotics and OP4 could be used to treat infections caused by Gram-negative bacteria by decreasing their intrinsic antibiotic resistance.

Keywords

References

  1. J Antimicrob Chemother. 1987 Jan;19(1):119-25 [PMID: 3104274]
  2. Biochemistry. 2002 Dec 3;41(48):14150-7 [PMID: 12450378]
  3. Immunochemistry. 1976 Oct;13(10):813-8 [PMID: 187544]
  4. Curr Opin Pharmacol. 2014 Oct;18:56-60 [PMID: 25254623]
  5. Biochemistry. 2002 Oct 8;41(40):12171-8 [PMID: 12356318]
  6. Appl Environ Microbiol. 2015 Apr;81(7):2506-14 [PMID: 25636838]
  7. J Clin Microbiol. 2021 Nov 18;59(12):e0021321 [PMID: 34550809]
  8. J Biol Chem. 2003 Jan 10;278(2):1310-5 [PMID: 12417587]
  9. Nat Commun. 2018 Jan 31;9(1):458 [PMID: 29386620]
  10. J Biol Chem. 2009 Dec 25;284(52):36099-36108 [PMID: 19858187]
  11. Future Microbiol. 2019 Feb;14:195-205 [PMID: 30648887]
  12. Proc Natl Acad Sci U S A. 2018 Sep 4;115(36):8852-8854 [PMID: 30139916]
  13. Clin Microbiol Infect. 2000 Sep;6(9):503-8 [PMID: 11168186]
  14. Nat Commun. 2019 Mar 13;10(1):1197 [PMID: 30867426]
  15. Lancet Infect Dis. 2013 Feb;13(2):155-65 [PMID: 23347633]
  16. Nat Rev Microbiol. 2010 Apr;8(4):260-71 [PMID: 20208551]
  17. Nat Rev Microbiol. 2019 Mar;17(3):141-155 [PMID: 30683887]
  18. Biochim Biophys Acta. 2002 Jul 29;1598(1-2):185-94 [PMID: 12147359]
  19. Trends Biotechnol. 2013 Mar;31(3):177-84 [PMID: 23333434]
  20. Int J Antimicrob Agents. 2019 Feb;53(2):143-151 [PMID: 30315918]
  21. Biochim Biophys Acta. 2006 Sep;1758(9):1461-74 [PMID: 16806056]
  22. Nat Rev Drug Discov. 2009 Feb;8(2):111-28 [PMID: 19180105]
  23. Biochim Biophys Acta. 2013 Feb;1828(2):249-59 [PMID: 23142566]
  24. Ann N Y Acad Sci. 1979;330:745-50 [PMID: 294217]
  25. PLoS Pathog. 2019 May 13;15(5):e1007763 [PMID: 31083687]
  26. Nature. 2019 Dec;576(7787):452-458 [PMID: 31645764]
  27. Appl Environ Microbiol. 2013 Apr;79(8):2657-69 [PMID: 23396346]
  28. Methods Mol Biol. 2019;1939:3-9 [PMID: 30848453]
  29. Nat Biotechnol. 2009 Jul;27(7):659-66 [PMID: 19581876]
  30. Nat Prod Rep. 2017 Jul 1;34(7):832-885 [PMID: 28530279]
  31. Eur Biophys J. 2011 Apr;40(4):387-97 [PMID: 21336522]
  32. Nat Rev Microbiol. 2015 Oct;13(10):605-19 [PMID: 26373371]
  33. FEMS Microbiol Rev. 2011 Sep;35(5):790-819 [PMID: 21517914]
  34. J Biol Chem. 2005 Jun 17;280(24):22945-50 [PMID: 15805109]
  35. Front Cell Infect Microbiol. 2019 Apr 30;9:128 [PMID: 31114762]
  36. Mol Pharmacol. 2000 Apr;57(4):679-86 [PMID: 10727512]
  37. Clin Microbiol Rev. 2012 Jul;25(3):450-70 [PMID: 22763634]
  38. Biochim Biophys Acta. 2007 Mar;1768(3):694-704 [PMID: 17254547]
  39. Mol Microbiol. 2021 Jul;116(1):298-310 [PMID: 33660340]
  40. Biochim Biophys Acta. 2010 Dec;1798(12):2201-8 [PMID: 20036634]
  41. Ann Med. 2001 Apr;33(3):167-71 [PMID: 11370769]
  42. Antimicrob Agents Chemother. 1984 Oct;26(4):546-51 [PMID: 6440475]
  43. Pharmacol Rev. 2003 Mar;55(1):27-55 [PMID: 12615953]
  44. Lancet Infect Dis. 2020 Sep;20(9):e216-e230 [PMID: 32653070]
  45. PLoS Pathog. 2021 Jan 14;17(1):e1009172 [PMID: 33444399]
  46. PLoS Med. 2016 Nov 29;13(11):e1002184 [PMID: 27898664]
  47. Appl Environ Microbiol. 1998 Jun;64(6):2269-72 [PMID: 9603847]
  48. Curr Opin Microbiol. 2016 Oct;33:7-12 [PMID: 27232956]
  49. Eur J Clin Microbiol Infect Dis. 2015 Jan;34(1):197-204 [PMID: 25169965]
  50. Microb Drug Resist. 2018 Dec;24(10):1450-1459 [PMID: 29792562]
  51. Biomatter. 2012 Oct-Dec;2(4):195-201 [PMID: 23507885]
  52. Nature. 2019 Dec;576(7787):459-464 [PMID: 31747680]
  53. Nat Rev Microbiol. 2021 Dec;19(12):786-797 [PMID: 34183822]

MeSH Term

Animals
Anti-Bacterial Agents
Bacteriocins
Drug Resistance, Bacterial
Erythromycin
Escherichia coli
Escherichia coli Infections
Gram-Negative Bacteria
Hydrophobic and Hydrophilic Interactions
Mice
Microbial Sensitivity Tests

Chemicals

Anti-Bacterial Agents
Bacteriocins
plantaricin A
Erythromycin

Word Cloud

Created with Highcharts 10.0.0resistanceouterantibioticmembraneantibioticsOP4Gram-negativecolibacteriahydrophobicbacterialPlnA1analogsEdevelopmentpotencypermeabilityerythromycinintrinsiccausedonePlantaricinPlnAincreasingEscherichiamechanismdesignedseriesabilitysublethalconcentrationssepsisshowedusetreatinfectionsantimicrobialeffectivelymajorfactorscontributingresultinglackeffectivenessseveralintensifiesMoreoverprovenbindlipopolysaccharideviaelectrostaticinteractionsinterfereintegrityBasedchangingstructurehydrophobicitychargeenhancemembrane-permeabilizingSubsequentanalysesrevealedamongdemonstratedhighestpenetratingweakercytotoxicityhighertherapeuticindexadditiondeceleratedcellscontinuouslyexposedciprofloxacin30generationsstudiesmiceheightensrelievesinflammationsummaryresultsinvestigatedpresentstudyespeciallyreducepathogensexpandsensitivityspectrumAntibioticglobalhealthconcerndueindiscriminatetransfercertainasymmetricpreventsentryrendersineffectiveConsequentlyemployedreportedlypenetratesmembranesprovedpeptidesaugmentedFurthermoreimprovedalleviatedinflammatoryresponsesinfectionLikewisecurtailedtherebyprolongingexposureThuscombineduseddecreasingDerivedLactiplantibacillusplantarumReducesIntrinsicResistanceGram-NegativeBacteriaHydrophobicAntibioticsantibacterialpeptide

Similar Articles

Cited By