Metatranscriptomic profiling reveals diverse tick-borne bacteria, protozoans and viruses in ticks and wildlife from Australia.

Alexander W Gofton, Kim R Blasdell, Casey Taylor, Peter B Banks, Michelle Michie, Emilie Roy-Dufresne, Jacqueline Poldy, Jian Wang, Michael Dunn, Mary Tachedjian, Ina Smith
Author Information
  1. Alexander W Gofton: CSIRO, Health and Biosecurity, Canberra, Connecticut, Australia. ORCID
  2. Kim R Blasdell: CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia.
  3. Casey Taylor: School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
  4. Peter B Banks: School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
  5. Michelle Michie: CSIRO, Health and Biosecurity, Canberra, Connecticut, Australia.
  6. Emilie Roy-Dufresne: CSIRO, Health and Biosecurity, Canberra, Connecticut, Australia.
  7. Jacqueline Poldy: CSIRO, Health and Biosecurity, Canberra, Connecticut, Australia.
  8. Jian Wang: CSIRO, Health and Biosecurity, Canberra, Connecticut, Australia.
  9. Michael Dunn: CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia.
  10. Mary Tachedjian: CSIRO, Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia.
  11. Ina Smith: CSIRO, Health and Biosecurity, Canberra, Connecticut, Australia.

Abstract

tick-borne zoonoses are emerging globally due to changes in climate and land use. While the zoonotic threats associated with ticks are well studied elsewhere, in Australia, the diversity of potentially zoonotic agents carried by ticks and their significance to human and animal health is not sufficiently understood. To this end, we used untargeted metatranscriptomics to audit the prokaryotic, eukaryotic and viral biomes of questing ticks and wildlife blood samples from two urban and rural sites in New South Wales, Australia. Ixodes holocyclus and Haemaphysalis bancrofti were the main tick species collected, and blood samples from Rattus rattus, Rattus fuscipes, Perameles nasuta and Trichosurus vulpecula were also collected and screened for tick-borne microorganisms using metatranscriptomics followed by conventional targeted PCR to identify important microbial taxa to the species level. Our analyses identified 32 unique tick-borne taxa, including 10 novel putative species. Overall, a wide range of tick-borne microorganisms were found in questing ticks including haemoprotozoa such as Babesia, Theileria, Hepatozoon and Trypanosoma spp., bacteria such as Borrelia, Rickettsia, Ehrlichia, Neoehrlichia and Anaplasma spp., and numerous viral taxa including Reoviridiae (including two coltiviruses) and a novel Flaviviridae-like jingmenvirus. Of note, a novel hard tick-borne relapsing fever Borrelia sp. was identified in questing H. bancrofti ticks which is closely related to, but distinct from, cervid-associated Borrelia spp. found throughout Asia. Notably, all tick-borne microorganisms were phylogenetically unique compared to their relatives found outside Australia, and no foreign tick-borne human pathogens such as Borrelia burgdorferi s.l. or Babesia microti were found. This work adds to the growing literature demonstrating that Australian ticks harbour a unique and endemic microbial fauna, including potentially zoonotic agents which should be further studied to determine their relative risk to human and animal health.

Keywords

References

  1. J Med Entomol. 2021 Jul 16;58(4):1546-1564 [PMID: 33095859]
  2. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  3. Ticks Tick Borne Dis. 2017 Aug;8(5):749-756 [PMID: 28601472]
  4. Ticks Tick Borne Dis. 2018 Feb;9(2):435-442 [PMID: 29284563]
  5. Ticks Tick Borne Dis. 2014 Oct;5(6):951-61 [PMID: 25129859]
  6. Microbiome. 2018 Oct 3;6(1):178 [PMID: 30285857]
  7. Aust Vet J. 1985 Dec;62(12):424 [PMID: 3833202]
  8. Clin Lab Med. 2015 Dec;35(4):867-82 [PMID: 26593262]
  9. PLoS One. 2019 Dec 18;14(12):e0225822 [PMID: 31851687]
  10. Arch Virol. 2018 Sep;163(9):2451-2457 [PMID: 29752559]
  11. Transbound Emerg Dis. 2022 Sep;69(5):e2389-e2407 [PMID: 35502617]
  12. J Gen Virol. 2014 Jul;95(Pt 7):1544-1553 [PMID: 24744300]
  13. Parasit Vectors. 2020 Sep 5;13(1):447 [PMID: 32891158]
  14. J Med Entomol. 2021 May 15;58(3):1248-1255 [PMID: 33511399]
  15. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  16. Parasit Vectors. 2017 Mar 13;10(1):114 [PMID: 28285585]
  17. PLoS Comput Biol. 2016 Jun 21;12(6):e1004957 [PMID: 27327495]
  18. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  19. Annu Rev Entomol. 2019 Jan 7;64:379-397 [PMID: 30354695]
  20. Int J Parasitol Parasites Wildl. 2018 May 24;7(2):197-203 [PMID: 29988853]
  21. Front Microbiol. 2021 May 12;12:627327 [PMID: 34054743]
  22. J Virol. 2019 Jan 17;93(3): [PMID: 30404810]
  23. Microbiome. 2019 Mar 18;7(1):41 [PMID: 30885266]
  24. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  25. Exp Appl Acarol. 2018 Feb;74(2):185-190 [PMID: 29396740]
  26. Front Biosci. 2008 May 01;13:6938-46 [PMID: 18508706]
  27. J Med Entomol. 1975 Oct 31;12(4):433-47 [PMID: 1195291]
  28. Annu Rev Entomol. 2021 Jan 7;66:373-388 [PMID: 33417823]
  29. Parasit Vectors. 2018 Jun 26;11(1):364 [PMID: 29941016]
  30. Virus Evol. 2015 Nov 13;1(1):vev014 [PMID: 27774286]
  31. G3 (Bethesda). 2024 Aug 19;: [PMID: 39158097]
  32. Curr Res Parasitol Vector Borne Dis. 2021 Sep 28;1:100052 [PMID: 35284862]
  33. EBioMedicine. 2019 May;43:317-324 [PMID: 31003930]
  34. Parasit Vectors. 2021 Jan 19;14(1):60 [PMID: 33468211]
  35. Pathogens. 2020 Oct 23;9(11): [PMID: 33114071]
  36. Zootaxa. 2014 Jun 18;(3816):1-144 [PMID: 24943801]
  37. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  38. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  39. Parasitology. 2011 Jun;138(7):866-72 [PMID: 21518469]
  40. Emerg Infect Dis. 2005 Nov;11(11):1673-9 [PMID: 16318717]
  41. Microorganisms. 2020 Jun 30;8(7): [PMID: 32630152]
  42. Appl Environ Microbiol. 2005 Mar;71(3):1336-45 [PMID: 15746336]
  43. Int J Parasitol. 2005 Apr 1;35(4):431-43 [PMID: 15777919]
  44. Intern Med J. 2018 Apr;48(4):422-426 [PMID: 29363839]
  45. Biol Lett. 2016 Jan;12(1):20150829 [PMID: 26814226]
  46. Ticks Tick Borne Dis. 2021 Jan;12(1):101596 [PMID: 33126202]
  47. mBio. 2014 Oct 14;5(5):e01933-14 [PMID: 25316698]
  48. Front Cell Infect Microbiol. 2019 Jan 28;9:3 [PMID: 30746341]
  49. Ticks Tick Borne Dis. 2020 May;11(3):101407 [PMID: 32051105]
  50. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  51. Med J Aust. 2016 Nov 7;205(9):413-417 [PMID: 27809728]
  52. Microb Genom. 2021 Dec;7(12): [PMID: 34913864]
  53. Vet Parasitol. 2009 May 26;162(1-2):23-31 [PMID: 19303711]
  54. Parasit Vectors. 2017 Dec 20;10(1):616 [PMID: 29262840]
  55. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  56. IMA Fungus. 2019 Aug 8;10:12 [PMID: 32355612]
  57. FEMS Microbiol Lett. 2009 Oct;299(2):241-7 [PMID: 19732154]
  58. Mol Biol Evol. 2018 Feb 1;35(2):518-522 [PMID: 29077904]
  59. J Wildl Dis. 2021 Jul 1;57(3):515-524 [PMID: 33901289]
  60. Parasitology. 2009 Jul;136(8):875-85 [PMID: 19570316]
  61. PLoS One. 2017 Mar 31;12(3):e0174727 [PMID: 28362864]
  62. Emerg Infect Dis. 2016 Sep;22(9):1635-9 [PMID: 27532491]
  63. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  64. Emerg Infect Dis. 2018 May;24(5):928-931 [PMID: 29664385]
  65. J Med Entomol. 2017 Sep 1;54(5):1444-1448 [PMID: 28874019]
  66. Parasit Vectors. 2011 Dec 07;4:228 [PMID: 22152674]
  67. Pathogens. 2021 Aug 16;10(8): [PMID: 34451502]
  68. PLoS One. 2015 Dec 28;10(12):e0145449 [PMID: 26709826]
  69. Parasitol Res. 2020 May;119(5):1691-1696 [PMID: 32198627]
  70. PeerJ. 2020 Dec 2;8:e10424 [PMID: 33344080]
  71. Trop Med Infect Dis. 2016 Aug 11;1(1): [PMID: 30270855]
  72. Pathogens. 2020 Dec 02;9(12): [PMID: 33276564]
  73. Curr Res Parasitol Vector Borne Dis. 2021 Jun 11;1:100037 [PMID: 35284883]
  74. mSphere. 2019 Nov 6;4(6): [PMID: 31694898]
  75. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  76. Parasit Vectors. 2018 Mar 20;11(1):197 [PMID: 29558984]
  77. Exp Appl Acarol. 2019 Dec;79(3-4):433-446 [PMID: 31677026]
  78. Ticks Tick Borne Dis. 2014 Oct;5(6):841-7 [PMID: 25108784]
  79. One Health. 2016 Apr 07;2:42-54 [PMID: 28616477]
  80. Elife. 2021 Apr 27;10: [PMID: 33904402]
  81. Int J Syst Evol Microbiol. 2016 Oct;66(10):4256-4261 [PMID: 27468908]
  82. N Engl J Med. 2019 May 30;380(22):2116-2125 [PMID: 31141633]
  83. Emerg Microbes Infect. 2018 Mar 21;7(1):38 [PMID: 29559624]
  84. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  85. BMC Ecol Evol. 2021 May 31;21(1):105 [PMID: 34058972]
  86. Ticks Tick Borne Dis. 2018 Mar;9(3):471-478 [PMID: 29331578]
  87. Int J Parasitol. 2004 Nov;34(12):1393-404 [PMID: 15542100]
  88. Ticks Tick Borne Dis. 2018 Mar;9(3):465-470 [PMID: 29329785]
  89. PLoS One. 2017 Jul 13;12(7):e0181279 [PMID: 28704541]
  90. Parasit Vectors. 2016 Jun 14;9(1):339 [PMID: 27301754]

MeSH Term

Animals
Animals, Wild
Australia
Borrelia
Humans
Ixodes
Rickettsia
Tick Infestations
Tick-Borne Diseases
Viruses

Word Cloud

Created with Highcharts 10.0.0tickstick-borneincludingBorreliaAustraliafoundzoonotichumanmetatranscriptomicsquestingspeciesmicroorganismstaxauniquenovelsppzoonosesstudiedpotentiallyagentsanimalhealthviralwildlifebloodsamplestwobancrofticollectedRattusmicrobialidentifiedBabesiabacteriapathogensTick-borneemerginggloballyduechangesclimatelandusethreatsassociatedwellelsewherediversitycarriedsignificancesufficientlyunderstoodenduseduntargetedauditprokaryoticeukaryoticbiomesurbanruralsitesNewSouthWalesIxodesholocyclusHaemaphysalismaintickrattusfuscipesPeramelesnasutaTrichosurusvulpeculaalsoscreenedusingfollowedconventionaltargetedPCRidentifyimportantlevelanalyses3210putativeOverallwiderangehaemoprotozoaTheileriaHepatozoonTrypanosomaRickettsiaEhrlichiaNeoehrlichiaAnaplasmanumerousReoviridiaecoltivirusesFlaviviridae-likejingmenvirusnotehardrelapsingfeverspHcloselyrelateddistinctcervid-associatedthroughoutAsiaNotablyphylogeneticallycomparedrelativesoutsideforeignburgdorferislmicrotiworkaddsgrowingliteraturedemonstratingAustralianharbourendemicfaunadeterminerelativeriskMetatranscriptomicprofilingrevealsdiverseprotozoansvirusesmetagenomics

Similar Articles

Cited By